# Neural Network Verification 

## Kumar Madhukar

Department of Computer Science and Engineering Indian Institute of Technology Delhi

IITD Winter Systems School 2023

December 7, 2023

## Reluplex (CAV 2017)

- based on the Simplex algorithm, extended to handle non-linear ReLU activation function
- motivation: DNNs are widely being used on real world problems, for doing complex tasks such as speech recognition, image classification, game playing, etc.
- safety and business-critical applications require formal guarantees
- verifying DNNs with ReLUs is NP-complete
- https://arxiv.org/abs/1702.01135


## Simplex method

- algorithm for linear programming (a technique for optimizing a linear objective function, given some linear equalities and inequalities over reals)
- decision problem - general Simplex
- accepts two kinds of constraints: equalities, and (optionally) lower/upper bounds
- example:

$$
\begin{aligned}
& x+y \geq 2 \wedge 2 x-y \geq 0 \wedge-x+2 y \geq 1 \\
& x+y-s_{1}=0 \wedge 2 x-y-s_{2}=0 \wedge-x+2 y-s_{3}=0 \\
& s_{1} \geq 2 \wedge s_{2} \geq 0 \wedge s_{3} \geq 1
\end{aligned}
$$

## Example

|  | $x$ | $y$ |
| ---: | ---: | ---: |
| $s_{1}$ | 1 | 1 |
| $s_{2}$ | 2 | -1 |
| $s_{3}$ | -1 | 2 |

$$
\begin{aligned}
& 2 \leq s_{1} \\
& 0 \leq s_{2} \\
& 1 \leq s_{3}
\end{aligned}
$$

## Example

|  | $s_{1}$ | $y$ |
| ---: | ---: | ---: |
| $x$ | 1 | -1 |
| $s_{2}$ | 2 | -3 |
| $s_{3}$ | -1 | 3 |

$$
\begin{aligned}
\alpha(x) & =2 \\
\alpha(y) & =0 \\
\alpha\left(s_{1}\right) & =2 \\
\alpha\left(s_{2}\right) & =4 \\
\alpha\left(s_{3}\right) & =-2
\end{aligned}
$$

## Example

|  | $s_{1}$ | $s_{3}$ |
| ---: | ---: | ---: |
| $x$ | $2 / 3$ | $-1 / 3$ |
| $s_{2}$ | 1 | -1 |
| $y$ | $1 / 3$ | $1 / 3$ |

$$
\begin{gathered}
\alpha(x)=1 \\
\alpha(y)=1 \\
\alpha\left(s_{1}\right)=2 \\
\alpha\left(s_{2}\right)=1 \\
\alpha\left(s_{3}\right)=1
\end{gathered}
$$

## Rectified Linear Units, ReLUs

- popular; piecewise linearity allows DNNs to generalize well
- relu $(x)=\max (0, x)$



## Toy example (from the introductory lecture)



- Is it possible that $v_{11} \in[0,1]$ and $v_{31} \in[0.5,1]$ ?


## ReLUs as variable pairs



- backward (weighted sum) variables, and forward (activation function) variables


## Backtracking algorithm, with case-splitting

- Linear programs (LP's) are easier to solve
- Piecewise linear constraints are reducible to LP's
- Backtracking algorithm:
- fix each relu to active or inactive state
- solve the resulting linear program
- if a solution is found, we are done
- otherwise, backtrack and try another option
- options exponential in the number of relu nodes


## Reluplex



- extends the Simplex method
- does not require case-splitting in advance
- splitting only if necessary (heuristic based)


## Revisiting Simplex

Pivot $_{1} \quad \frac{x_{i} \in \mathcal{B}, \quad \alpha\left(x_{i}\right)<l\left(x_{i}\right), \quad x_{j} \in \operatorname{slack}^{+}\left(x_{i}\right)}{T:=\operatorname{pivot}(T, i, j), \quad \mathcal{B}:=\mathcal{B} \cup\left\{x_{j}\right\} \backslash\left\{x_{i}\right\}}$
Pivot $_{2} \quad \frac{x_{i} \in \mathcal{B}, \quad \alpha\left(x_{i}\right)>u\left(x_{i}\right), \quad x_{j} \in \operatorname{slack}^{-}\left(x_{i}\right)}{T:=\operatorname{pivot}(T, i, j), \quad \mathcal{B}:=\mathcal{B} \cup\left\{x_{j}\right\} \backslash\left\{x_{i}\right\}}$
Update $\frac{x_{j} \notin \mathcal{B}, \quad \alpha\left(x_{j}\right)<l\left(x_{j}\right) \vee \alpha\left(x_{j}\right)>u\left(x_{j}\right), \quad l\left(x_{j}\right) \leq \alpha\left(x_{j}\right)+\delta \leq u\left(x_{j}\right)}{\alpha:=\operatorname{update}\left(\alpha, x_{j}, \delta\right)}$
Failure $\frac{x_{i} \in \mathcal{B}, \quad\left(\alpha\left(x_{i}\right)<l\left(x_{i}\right) \wedge \operatorname{slack}^{+}\left(x_{i}\right)=\emptyset\right) \vee\left(\alpha\left(x_{i}\right)>u\left(x_{i}\right) \wedge \operatorname{slack}^{-}\left(x_{i}\right)=\emptyset\right)}{\text { UNSAT }}$

$$
\text { Success } \frac{\forall x_{i} \in \mathcal{X} . l\left(x_{i}\right) \leq \alpha\left(x_{i}\right) \leq u\left(x_{i}\right)}{\operatorname{SAT}}
$$

$$
\begin{aligned}
& \operatorname{slack}^{+}\left(x_{i}\right)=\left\{x_{j} \notin \mathcal{B} \mid\left(T_{i, j}>0 \wedge \alpha\left(x_{j}\right)<u\left(x_{j}\right)\right) \vee\left(T_{i, j}<0 \wedge \alpha\left(x_{j}\right)>l\left(x_{j}\right)\right)\right. \\
& \operatorname{slack}^{-}\left(x_{i}\right)=\left\{x_{j} \notin \mathcal{B} \mid\left(T_{i, j}<0 \wedge \alpha\left(x_{j}\right)<u\left(x_{j}\right)\right) \vee\left(T_{i, j}>0 \wedge \alpha\left(x_{j}\right)>l\left(x_{j}\right)\right)\right.
\end{aligned}
$$

## Reluplex: example



## Case-splitting

- not needed for this toy example, but can become necessary
- the same relu pair may keep breaking
- if that happens beyond a threshold, split
- solve the active and inactive cases separately
- $\left(v_{i j}^{b} \geq 0\right) \wedge\left(v_{i j}^{f}=v_{i j}^{b}\right)$
- $\left(v_{i j}^{b}<0\right) \wedge\left(v_{i j}^{f}=0\right)$
- if any of them reach a solution, it is done


## Reluplex derivation rules

$$
\begin{gathered}
\text { Update }_{b} \frac{x_{i} \notin \mathcal{B}, \quad\left\langle x_{i}, x_{j}\right\rangle \in R, \quad \alpha\left(x_{j}\right) \neq \max \left(0, \alpha\left(x_{i}\right)\right), \quad \alpha\left(x_{j}\right) \geq 0}{\alpha:=\operatorname{update}\left(\alpha, x_{i}, \alpha\left(x_{j}\right)-\alpha\left(x_{i}\right)\right)} \\
\text { Update }_{f} \frac{x_{j} \notin \mathcal{B}, \quad\left\langle x_{i}, x_{j}\right\rangle \in R, \quad \alpha\left(x_{j}\right) \neq \max \left(0, \alpha\left(x_{i}\right)\right)}{\alpha:=\operatorname{update}\left(\alpha, x_{j}, \max \left(0, \alpha\left(x_{i}\right)\right)-\alpha\left(x_{j}\right)\right)} \\
\text { PivotForRelu } \frac{x_{i} \in \mathcal{B}, \quad \exists x_{l} .\left\langle x_{i}, x_{l}\right\rangle \in R \vee\left\langle x_{l}, x_{i}\right\rangle \in R, \quad x_{j} \notin \mathcal{B}, \quad T_{i, j} \neq 0}{T:=\operatorname{pivot}(T, i, j), \quad \mathcal{B}:=\mathcal{B} \cup\left\{x_{j}\right\} \backslash\left\{x_{i}\right\}} \\
\text { ReluSplit } \frac{\left\langle x_{i}, x_{j}\right\rangle \in R, \quad l\left(x_{i}\right)<0, \quad u\left(x_{i}\right)>0}{u\left(x_{i}\right):=0} l\left(x_{i}\right):=0 \\
\text { ReluSuccess } \forall x \in \mathcal{X} . l(x) \leq \alpha(x) \leq u(x), \quad \forall\left\langle x^{b}, x^{f}\right\rangle \in R . \alpha\left(x^{f}\right)=\max \left(0, \alpha\left(x^{b}\right)\right) \\
\operatorname{SAT}
\end{gathered}
$$

## Reluplex algorithm: Efficient Implementation

- bound tightening (tighter upper/lower bounds can eliminate ReLUs)

$$
\begin{gathered}
x=y+z \\
x \geq-2 \\
y \geq 1 \\
z \geq 1
\end{gathered}
$$

$$
\begin{aligned}
& \text { deriveLowerBound } \frac{x_{i} \in \mathcal{B}, l\left(x_{i}\right)<\sum_{x_{i} \in \operatorname{pos}\left(x_{i}\right)} T_{i, j} \cdot l\left(x_{j}\right)+\sum_{x_{i} \in \operatorname{neg}\left(x_{i} i\right.} T_{i, j} \cdot u\left(x_{j}\right)}{l\left(x_{i}\right):=\sum_{x_{j} \in \operatorname{pos}\left(x_{i}\right)} T_{i, j} \cdot l\left(x_{j}\right)+\sum_{x_{j} \in \operatorname{neg}\left(x_{i}\right)} T_{i, j} \cdot u\left(x_{j}\right)} \\
& \text { deriveUpperBound } \frac{x_{i} \in \mathcal{B}, u\left(x_{i}\right)>\sum_{x_{j} \in \operatorname{pos}\left(x_{i}\right)} T_{i, j} \cdot u\left(x_{j}\right)+\sum_{x_{j} \in \operatorname{neg}\left(x_{i}\right)} T_{i, j} \cdot l\left(x_{j}\right)}{u\left(x_{i}\right):=\sum_{x_{j} \in \operatorname{pos}\left(x_{i}\right)} T_{i, j} \cdot u\left(x_{j}\right)+\sum_{x_{j} \in \operatorname{neg}\left(x_{i}\right)} T_{i, j} \cdot l\left(x_{j}\right)}
\end{aligned}
$$

## Reluplex algorithm: Efficient Implementation

- conflict analysis
- bound tightening $\rightarrow$ contradictions (lb.x>ub.x) $\rightarrow$ backtracking
- floating-point arithmetic (round-off errors are kept small)
- standard way is to use precise computation (avoids round-off errors and ensures soundness)


## Properties of interest



- no unnecessary turning advisories
- alterting regions are consistent, symmetric
- no strong alerts for large vertical separation


## Properties: Example 1

- if the intruder is near, and approaching from the left, the network advises strong right
- distance: $12000 \leq \rho \leq 62000$
- angle to intruder: $0.2 \leq \theta \leq 0.4$


## Properties: Example 2

- if the vertical separation is large and the previous advisory is weak left, the network advises weak left
- time to loss of vertical separation, $\tau: 100$
- distance: $0 \leq \rho \leq 60760$
- counterexample found: 11 hours 8 minutes


## Experiments

|  | Networks | Result | Time | Stack | Splits |
| :--- | ---: | :---: | :---: | ---: | ---: |
| $\phi_{1}$ | 41 | UNSAT | 394517 | 47 | 1522384 |
| $\phi_{2}$ | 4 | TIMEOUT |  |  |  |
|  | 1 | UNSAT | 463 | 55 | 88388 |
| $\phi_{3}$ | 35 | SAT | 82419 | 44 | 284515 |
| $\phi_{4}$ | 42 | UNSAT | 28156 | 22 | 52080 |
| $\phi_{5}$ | 42 | UNSAT | 12475 | 21 | 23940 |
| $\phi_{6}$ | 1 | UNSAT | 19355 | 46 | 58914 |
| $\phi_{7}$ | 1 | UNSAT | 180288 | 50 | 548496 |
| $\phi_{8}$ | 1 | TIMEOUT |  |  |  |
| $\phi_{9}$ | 1 | SAT | 40102 | 69 | 116697 |
| $\phi_{10}$ | 1 | UNSAT | 99634 | 48 | 227002 |

## Comparison to SMT and LP solvers

|  | $\varphi_{1}$ | $\varphi_{2}$ | $\varphi_{3}$ | $\varphi_{4}$ | $\varphi_{5}$ | $\varphi_{6}$ | $\varphi_{7}$ | $\varphi_{8}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| CVC4 | - | - | - | - | - | - | - | - |
| Z3 | - | - | - | - | - | - | - | - |
| Yices | 1 | 37 | - | - | - | - | - | - |
| MathSat | 2040 | 9780 | - | - | - | - | - | - |
| Gurobi | 1 | 1 | 1 | - | - | - | - | - |
| Reluplex | 8 | 2 | 7 | 7 | 93 | 4 | 7 | 9 |

- results on 2 networks, 8 simple properties, timeout 14400 s
- SMT solvers suffer from: precise arithmetic, lack of direct support for ReLUs
- Gurobi solved faster, but only instances that didn't need case-splitting


## Complexity of the verification task

- Verifying properties in DNNs with ReLUs is NP-Complete.
- DNN $\mathcal{N}$, property $\phi$ (conjunction of linear constraints on input and output)
- $\phi$ is satisfiable on $\mathcal{N}$ if there exists an assignment $\alpha$, such that $\alpha($ output $)=\mathcal{N}(\alpha($ input $))$, and $\alpha$ satisfies $\phi$
- membership is easy; the witness can be simulated on $\mathcal{N}$
- for NP-hardness, we show that 3-SAT can be reduced to this


## Disjunction gadget



## Negation gadget



## Conjunction gadget



## Reduction



## Abstraction-Refinement (CAV 2020)

- replace the DNN $\mathcal{N}$ by a "smaller" (abstract) network $\overline{\mathcal{N}}$
- verify $\overline{\mathcal{N}}$; by construction, if $\overline{\mathcal{N}}$ meets the spec, so does $\mathcal{N}$
- if $\overline{\mathcal{N}}$ fails to meet the spec, there must be counterexample $x$
- if $x$ is actual, $\mathcal{N}$ violates the spec
- else refine $\overline{\mathcal{N}}$ (little more accurate, and "larger")
- done using the spurious $x$ (Counterexample-Guided Abstraction Refinement, or CEGAR)
- https://arxiv.org/abs/1910. 14574


## Background: Neural Networks



- feedforward neural network (missing: edge weights and activation function)
- evaluate a neuron: compute weighted sum, and apply activation function
- $\operatorname{ReLU}(x)=\max (0, x)$, called Rectified Linear Unit


## An example



- three layers; input $v_{1,1}$ is 3
- node $v_{2,1}$ evaluates to 3 , and node $v_{2,2}$ evaluates to 0
- output node $v_{3,1}$ evaluates to 3


## Verification

- precondition $\mathcal{P}$, postcondition $Q$, network $\mathcal{N}$
- is there an input $x$ that satisfies $\mathcal{P}(x)$ and $Q(y)$, where $y=\mathcal{N}(x)$
- assumptions made in this paper:
- (on $\mathcal{N}$ ) - only ReLU activation functions; single output node
- (on $\mathcal{P}$ ) - conjunctions of linear constraints on input values
- (on Q) - $y>c$, for a given constant $c$
- not as limiting as it may seem (let us come back to this in the end)


## Recall the toy example



## Abstraction

- transform the neural network $\mathcal{N}$ into $\overline{\mathcal{N}}$, such that $\mathcal{N}(x) \leq \overline{\mathcal{N}}(x)$, for every input $x$
- if abstract is safe $(\overline{\mathcal{N}}(x) \leq c)$, then so is the concrete $(\mathcal{N}(x) \leq c)$
- abstraction-refinement: merging neurons (and then splitting back)
- but not on $\mathcal{N}$ (on an equivalent network $\mathcal{N}^{\prime \prime}$ )


## $\mathcal{N} \rightarrow \mathcal{N}^{\prime \prime} \rightarrow \mathcal{N}^{\prime \prime} \quad$ (all equivalent)



- every hidden neuron should either be pos or neg
- based on weights of outgoing edges; split if needed ( $\mathcal{N}^{\prime}$ )
- also, every neuron must be inc or dec; split if needed
- depending on whether increasing (or decreasing) its value results in an increased output (traversing backwards)


## The abstract operator

- merges a pair of neurons; can be done multiple times
- merge only if the pos/neg and inc/dec attributes are same
- for the (pos, inc) and (neg, inc) case
- take max of incoming, and sum of outgoing
- for the (pos, dec) and (neg, dec) case
- take min of incoming, and sum of outgoing
- intuitively, the new node contributes more to the output (than the two original nodes)


## An example



- abstraction is independent of the order in which it was done


## The need to refine

- of course, if the abstraction is too coarse
- suppose $\mathcal{N}\left(x_{0}\right)=3, \overline{\mathcal{N}}\left(x_{0}\right)=8$, and the property is $\overline{\mathcal{N}}(x) \leq 6$
- need to refine $\overline{\mathcal{N}}$ into $\overline{\mathcal{N}}^{\prime}$, such that for every $x, \mathcal{N}(x) \leq \overline{\mathcal{N}}^{\prime}(x) \leq \overline{\mathcal{N}}(x)$
- refine picks a concrete neuron from an abstract neuron, and puts it back in the network


## More about the abstraction

- apply abstraction to saturation (to at most 4 neurons in every hidden layer)
- can be controlled based on certain heuristics
- inaccuracies by caused by the max and min operators
- merge neurons that approximate least; split one that restores the most


## Merging heuristics



- merge: maximal value of $|a-b|$ (over all incoming edges with weights $a$ and $b$ ) is minimal
- the new edge is "closest" to the replaced ones (saving a neuron anyway!)
- merging $\left(v_{1}, v_{2}\right)$, the $(a, b)$ pairs are: $(1,4),(-2,-1)$
- $\max (|1-4|,|-2-(-1)|)=3$
- merging $\left(v_{1}, v_{3}\right)$, the $(a, b)$ pairs are: $(1,2),(-2,-3)$
- $\max (|1-2|,|-2-(-3)|)=1$
- merging $\left(v_{2}, v_{3}\right)$, the $(a, b)$ pairs are: $(4,2),(-1,-3)$
- $\max (|1-2|,|-2-(-3)|)=2$
- merge $\left(v_{1}, v_{3}\right)$ first


## Splitting heuristics



$$
\begin{gathered}
y=5 R\left(x_{1}-2 x_{2}\right)+ \\
3 R\left(4 x_{1}-x_{2}\right)+4 R\left(2 x_{1}-3 x_{2}\right)
\end{gathered}
$$

$$
y=8 R\left(4 x_{1}-x_{2}\right)+4 R\left(2 x_{1}-3 x_{2}\right)
$$


$y=12 R\left(4 x_{1}-x_{2}\right)$

- split: $v$ from $\bar{v}$, by considering
- edge-weight difference between $v$ and $\bar{v}$
- difference between $v(x)$ and $\bar{v}(x)$, for the counterexample $x$

- consider the counterexample ( $x_{1}=1, x_{2}=0$ )
- original neurons' evaluation: $\left(v_{1}=1, v_{2}=4, v_{3}=2\right)$
- abstract neuron's evaluation: $(\bar{v}=4)$
- wt. diff. (between $v_{1}$ and $\bar{v}$ ) for in-edge from $x_{1}, x_{2}: 3,1$
- wt. diff. (between $v_{2}$ and $\bar{v}$ ) for in-edge from $x_{1}, x_{2}: 0,0$
- wt. diff. (between $v_{3}$ and $\bar{v}$ ) for in-edge from $x_{1}, x_{2}: 2,2$
- remove $v_{1}$, (wt. diff $*$ val. diff.) is largest: $(9,0,4)$


## The complete CEGAR algorithm

```
Algorithm 1. Abstraction-based DNN Verification \((N, P, Q)\)
    1: Use abstract to generate an initial over-approximation \(\bar{N}\) of \(N\)
    2: if \(\operatorname{Verify}(\bar{N}, P, Q)\) is UNSAT then
    3: return UNSAT
    4: else
    5: Extract counterexample \(c\)
    6: \(\quad\) if \(c\) is a counterexample for \(N\) then
    7: return SAT
    8: else
    9: Use refine to refine \(\bar{N}\) into \(\bar{N}^{\prime}\)
10: \(\quad \bar{N} \leftarrow N^{\prime}\)
11: Goto step 2
12: end if
13: end if
```


## Reducing a complex property (in the desired form)



- consider the property $\left(y_{2}>y_{1}\right) \vee\left(y_{2}>y_{3}\right)$
- encoded by adding neurons $t_{1}, t_{2}$, and $z_{1}$
- $t_{1}=\max \left(0, y_{2}-y_{1}\right)$
- $t_{2}=\max \left(0, y_{2}-y_{3}\right)$
- $z_{1}=t_{1}+t_{2}$
- property: $z_{1}>0$ (iff $\left.t_{1}>0 \vee t_{2}>0\right)$


## Experiments

- 45 DNNs from ACAS
- input is a set of sensor readings (speed, direction, location, etc.)
- five output neurons - possible turning advisories (left, right, clear-of-conflict, etc.)
- each DNN has 300 hidden neurons, across 6 hidden layers (leading to 1200 neurons after the transformation)


## Findings

- abstraction to saturation outperforms indicator-guided abstraction
- avg. 269 nodes were needed to prove (the original has 310)
- "simpler" queries may sometimes be better than smaller networks
- reconfirmed in another set of experiments: even though network size increased (to avg. 385, from 310), abstracted versions were easier to verify that the original
- even further reduction on adversarial robustness properties


## Modifying DNNs (LPAR 2020): Motivation

- change an existing DNN in a "small" way
- DNNs may have a bug (an undesirable behavior) that needs fixing
- should not impact the other functionality significantly
- one may retrain, but it is expensive and may lead to a very different DNN


## DNN Verification Problem

- network $N$, precondition $P$, and postcondition $Q$
- does there exist an input $x$ such that $P(x)$ and $Q(y)$ hold, where $y=N(x)$


## DNN Modification Problem

Definition 1. The DNN Modification Problem. Let $N$ denote a DNN, let $X$ denote a set of fixed input points $X=\left\{x_{1}, \ldots, x_{n}\right\}$, and let $Q$ denote a predicate over the classifications $N\left(x_{1}\right), \ldots, N\left(x_{n}\right)$ of the points of $X$. The DNN modification problem is to find a new DNN, $N^{\prime}$, such that $Q\left(N^{\prime}\left(x_{1}\right), \ldots, N^{\prime}\left(x_{n}\right)\right)$ holds, and such that the distance between $N$ and $N^{\prime}$ is at most some $\delta>0$.

## Example



- let $X=\{\langle 3,4\rangle\}$ and $Q\left(N^{\prime}(\langle 3,4\rangle)\right)=v_{3,1} \geq v_{3,2}$


## DNN Distance

- DNNs of identical topology


$$
\begin{aligned}
& \left\|N^{1}-N^{2}\right\|_{1}=(|-0.5|+|1|+|1|+|-0.5|+|0.5|+|0.5|+0+0)=4 \\
& \left\|N^{1}-N^{2}\right\|_{\infty}=\max \{|-0.5|,|1|,|1|,|-0.5|,|0.5|,|0.5|, 0,0\}=1
\end{aligned}
$$

## Minimal Modification

- find the closest $N^{\prime}$ that solves the DNN Modification Problem
- repeatedly solving the modification problem as part of a binary search
- optimization problem, but highly non-convex and high-dimensional


## Example

- let $X=\{\langle 3,4\rangle\}$ and $Q\left(N^{\prime}(\langle 3,4\rangle)\right)=v_{3,1} \geq v_{3,2}$


$$
\begin{aligned}
& v_{3,1}=\left(1+w_{5}\right) \cdot \operatorname{ReLU}\left(3\left(1+w_{1}\right)+4\left(-2+w_{3}\right)\right)+\left(-1+w_{7}\right) \cdot \operatorname{ReLU}\left(3\left(2+w_{2}\right)+4\left(-1+w_{4}\right)\right) \\
& v_{3,2}=\left(-1+w_{6}\right) \cdot \operatorname{ReLU}\left(3\left(1+w_{1}\right)+4\left(-2+w_{3}\right)\right)+\left(1+w_{8}\right) \cdot \operatorname{ReLU}\left(3\left(2+w_{2}\right)+4\left(-1+w_{4}\right)\right)
\end{aligned}
$$

## Single layer modification



$$
\begin{aligned}
v_{3,1} & =\operatorname{ReLU}\left(3\left(1+w_{1}\right)+4\left(-2+w_{3}\right)\right)-\operatorname{ReLU}\left(3\left(2+w_{2}\right)+4\left(-1+w_{4}\right)\right) \\
& =\operatorname{ReLU}\left(3 w_{1}+4 w_{3}-5\right)-\operatorname{ReLU}\left(3 w_{2}+4 w_{4}+2\right) \\
v_{3,2} & =-\operatorname{ReLU}\left(3\left(1+w_{1}\right)+4\left(-2+w_{3}\right)\right)+\operatorname{ReLU}\left(3\left(2+w_{2}\right)+4\left(-1+w_{4}\right)\right) \\
& =-\operatorname{ReLU}\left(3 w_{1}+4 w_{3}-5\right)+\operatorname{ReLU}\left(3 w_{2}+4 w_{4}+2\right)
\end{aligned}
$$

## Single layer modification as DNN verification

$$
\begin{aligned}
v_{3,1} & =\operatorname{ReLU}\left(3\left(1+w_{1}\right)+4\left(-2+w_{3}\right)\right)-\operatorname{ReLU}\left(3\left(2+w_{2}\right)+4\left(-1+w_{4}\right)\right) \\
& =\operatorname{ReLU}\left(3 w_{1}+4 w_{3}-5\right)-\operatorname{ReLU}\left(3 w_{2}+4 w_{4}+2\right) \\
v_{3,2} & =-\operatorname{ReLU}\left(3\left(1+w_{1}\right)+4\left(-2+w_{3}\right)\right)+\operatorname{ReLU}\left(3\left(2+w_{2}\right)+4\left(-1+w_{4}\right)\right) \\
& =-\operatorname{ReLU}\left(3 w_{1}+4 w_{3}-5\right)+\operatorname{ReLU}\left(3 w_{2}+4 w_{4}+2\right)
\end{aligned}
$$

$$
P=\bigwedge_{i=1}^{4}-\delta \leq w_{i} \leq \delta
$$



$$
Q=v_{3,1} \geq v_{3,2}
$$

## Output layer modification



Minimize: $M$
Subject to: $M \geq 0$
$-M \leq w_{1} \leq M$
$-M \leq w_{2} \leq M$
$-M \leq w_{3} \leq M$
$-M \leq w_{4} \leq M$
$v_{3,1}=0 \cdot\left(1+w_{1}\right)+2 \cdot\left(-1+w_{3}\right)$
$v_{3,2}=0 \cdot\left(-1+w_{2}\right)+2 \cdot\left(1+w_{4}\right)$
$v_{3,1} \geq v_{3,2}$

Thank you!

