Neural Network Verification

Kumar Madhukar

Department of Computer Science and Engineering Indian Institute of Technology Delhi

IITD Winter Systems School 2023

December 7, 2023

- based on the Simplex algorithm, extended to handle non-linear ReLU activation function
- motivation: DNNs are widely being used on real world problems, for doing complex tasks such as speech recognition, image classification, game playing, etc.
- safety and business-critical applications require formal guarantees
- verifying DNNs with ReLUs is NP-complete
- https://arxiv.org/abs/1702.01135

- algorithm for linear programming (a technique for optimizing a linear objective function, given some linear equalities and inequalities over reals)
- decision problem general Simplex
- accepts two kinds of constraints: equalities, and (optionally) lower/upper bounds
- example:

Example

	x	y	
s_1	1	1	$\begin{array}{l} 2 \leq s_1 \\ 0 \leq s_2 \end{array}$
s_2	2	-1	$\begin{array}{c} 0 \leq s_2 \\ 1 \leq s_3 \end{array}$
s_3	-1	2	

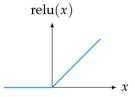
Example

Example

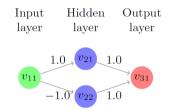
	s_1	s_3	$\alpha(x) = 1$
x	2/3	-1/3	$\alpha(y) = 1$
s_2	1	-1	$\begin{aligned} \alpha(s_1) &= 2\\ \alpha(s_2) &= 1 \end{aligned}$
y	1/3	1/3	$\alpha(s_3) = 1$

Rectified Linear Units, ReLUs

- popular; piecewise linearity allows DNNs to generalize well
- relu(x) = max(0, x)



Toy example (from the introductory lecture)



• Is it possible that $v_{11} \in [0, 1]$ and $v_{31} \in [0.5, 1]$?

ReLUs as variable pairs

• *backward* (weighted sum) variables, and *forward* (activation function) variables

Backtracking algorithm, with case-splitting

- Linear programs (LP's) are easier to solve
- Piecewise linear constraints are reducible to LP's
- Backtracking algorithm:
 - fix each relu to active or inactive state
 - solve the resulting linear program
 - if a solution is found, we are done
 - otherwise, backtrack and try another option
- options exponential in the number of relu nodes

Reluplex

- extends the Simplex method
- does not require case-splitting in advance
- splitting only if necessary (heuristic based)

Revisiting Simplex

$$\begin{array}{l} \mathsf{Pivot}_1 \quad \frac{x_i \in \mathcal{B}, \quad \alpha(x_i) < l(x_i), \quad x_j \in \mathrm{slack}^+(x_i)}{T := pivot(T, i, j), \quad \mathcal{B} := \mathcal{B} \cup \{x_j\} \setminus \{x_i\} \\ \\ \mathsf{Pivot}_2 \quad \frac{x_i \in \mathcal{B}, \quad \alpha(x_i) > u(x_i), \quad x_j \in \mathrm{slack}^-(x_i)}{T := pivot(T, i, j), \quad \mathcal{B} := \mathcal{B} \cup \{x_j\} \setminus \{x_i\} \\ \\ \mathsf{Update} \quad \frac{x_j \notin \mathcal{B}, \quad \alpha(x_j) < l(x_j) \lor \alpha(x_j) > u(x_j), \quad l(x_j) \leq \alpha(x_j) + \delta \leq u(x_j)}{\alpha := update(\alpha, x_j, \delta)} \\ \\ \mathsf{Failure} \quad \frac{x_i \in \mathcal{B}, \quad (\alpha(x_i) < l(x_i) \land \mathrm{slack}^+(x_i) = \emptyset) \lor (\alpha(x_i) > u(x_i) \land \mathrm{slack}^-(x_i) = \emptyset)}{\mathsf{UNSAT}} \\ \\ \\ \mathsf{Success} \quad \frac{\forall x_i \in \mathcal{X}. \ l(x_i) \leq \alpha(x_i) \leq u(x_i)}{\mathsf{SAT}} \\ \end{array}$$

$$slack^+(x_i) = \{x_j \notin \mathcal{B} \mid (T_{i,j} > 0 \land \alpha(x_j) < u(x_j)) \lor (T_{i,j} < 0 \land \alpha(x_j) > l(x_j)) \\ slack^-(x_i) = \{x_j \notin \mathcal{B} \mid (T_{i,j} < 0 \land \alpha(x_j) < u(x_j)) \lor (T_{i,j} > 0 \land \alpha(x_j) > l(x_j)) \\ \end{cases}$$

Reluplex: example

- not needed for this toy example, but can become necessary
- the same relu pair may keep breaking
- if that happens beyond a threshold, split
- solve the active and inactive cases separately

•
$$(v^b_{ij} \geq 0) \wedge (v^f_{ij} = v^b_{ij})$$

- $(v_{ij}^{b} < 0) \land (v_{ij}^{f} = 0)$
- if any of them reach a solution, it is done

$$\begin{split} & \text{Update}_{b} \quad \frac{x_{i} \notin \mathcal{B}, \quad \langle x_{i}, x_{j} \rangle \in R, \quad \alpha(x_{j}) \neq \max\left(0, \alpha(x_{i})\right), \quad \alpha(x_{j}) \geq 0}{\alpha := update(\alpha, x_{i}, \alpha(x_{j}) - \alpha(x_{i}))} \\ & \text{Update}_{f} \quad \frac{x_{j} \notin \mathcal{B}, \quad \langle x_{i}, x_{j} \rangle \in R, \quad \alpha(x_{j}) \neq \max\left(0, \alpha(x_{i})\right)}{\alpha := update(\alpha, x_{j}, \max\left(0, \alpha(x_{i})\right) - \alpha(x_{j})\right)} \\ & \text{PivotForRelu} \quad \frac{x_{i} \in \mathcal{B}, \quad \exists x_{l}, \quad \langle x_{i}, x_{l} \rangle \in R \lor \langle x_{l}, x_{i} \rangle \in R, \quad x_{j} \notin \mathcal{B}, \quad T_{i,j} \neq 0}{T := pivot(T, i, j), \quad \mathcal{B} := \mathcal{B} \cup \{x_{j}\} \setminus \{x_{i}\}} \\ & \text{ReluSplit} \quad \frac{\langle x_{i}, x_{j} \rangle \in R, \quad l(x_{i}) < 0, \quad u(x_{i}) > 0}{u(x_{i}) := 0} \\ & \text{ReluSuccess} \quad \frac{\forall x \in \mathcal{X}. \ l(x) \leq \alpha(x) \leq u(x), \quad \forall \langle x^{b}, x^{f} \rangle \in R. \quad \alpha(x^{f}) = \max\left(0, \alpha(x^{b})\right)}{\text{SAT}} \end{split}$$

Reluplex algorithm: Efficient Implementation

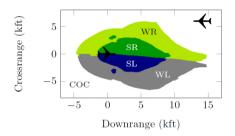
• bound tightening (tighter upper/lower bounds can eliminate ReLUs)

$$\begin{split} & x = y + z \\ & x \geq -2 \\ & y \geq 1 \\ & z \geq 1 \end{split}$$
 derives: $x \geq 2$
deriveLowerBound $\frac{x_i \in \mathcal{B}, \ l(x_i) < \sum_{x_j \in \text{pos}(x_i)} T_{i,j} \cdot l(x_j) + \sum_{x_j \in \text{neg}(x_i)} T_{i,j} \cdot u(x_j)}{l(x_i) := \sum_{x_j \in \text{pos}(x_i)} T_{i,j} \cdot l(x_j) + \sum_{x_j \in \text{neg}(x_i)} T_{i,j} \cdot u(x_j)}$
deriveUpperBound $\frac{x_i \in \mathcal{B}, \ u(x_i) > \sum_{x_j \in \text{pos}(x_i)} T_{i,j} \cdot u(x_j) + \sum_{x_j \in \text{neg}(x_i)} T_{i,j} \cdot l(x_j)}{u(x_i) := \sum_{x_j \in \text{pos}(x_i)} T_{i,j} \cdot u(x_j) + \sum_{x_j \in \text{neg}(x_i)} T_{i,j} \cdot l(x_j)}$

Reluplex algorithm: Efficient Implementation

- conflict analysis
 - bound tightening \rightarrow contradictions (*lb.x* > *ub.x*) \rightarrow backtracking
- floating-point arithmetic (round-off errors are kept small)
- standard way is to use precise computation (avoids round-off errors and ensures soundness)

Properties of interest



- no unnecessary turning advisories
- alterting regions are consistent, symmetric
- no strong alerts for large vertical separation

- if the intruder is near, and approaching from the left, the network advises strong right
 - distance: $12000 \le \rho \le 62000$
 - angle to intruder: $0.2 \le \theta \le 0.4$

- *if the vertical separation is large and the previous advisory is weak left, the network advises weak left*
 - time to loss of vertical separation, τ : 100
 - distance: $0 \le \rho \le 60760$
- counterexample found: 11 hours 8 minutes

Experiments

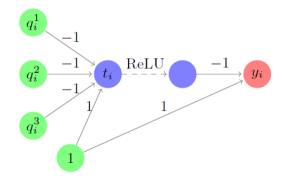
	Networks	Result	Time	Stack	Splits
ϕ_1	41	UNSAT	394517	47	1522384
	4	TIMEOUT			
ϕ_2	1	UNSAT	463	55	88388
	35	SAT	82419	44	284515
ϕ_3	42	UNSAT	28156	22	52080
ϕ_4	42	UNSAT	12475	21	23940
ϕ_5	1	UNSAT	19355	46	58914
ϕ_6	1	UNSAT	180288	50	548496
ϕ_7	1	TIMEOUT			
ϕ_8	1	SAT	40102	69	116697
ϕ_9	1	UNSAT	99634	48	227002
ϕ_{10}	1	UNSAT	19944	49	88520

	φ_1	φ_2	φ_3	φ_4	φ_5	$arphi_6$	φ_7	φ_8
CVC4	-	-	-	-	-	-	-	-
Z3	-	-	-	-	-	-	-	-
Yices	1	37	-	-	-	-	-	-
MathSat	2040	9780	-	-	-	-	-	-
Gurobi	1	1	1	-	-	-	-	-
Reluplex	8	2	7	7	93	4	7	9

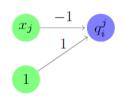
- results on 2 networks, 8 simple properties, timeout 14400s
- SMT solvers suffer from: precise arithmetic, lack of direct support for ReLUs
- Gurobi solved faster, but only instances that didn't need case-splitting

- Verifying properties in DNNs with ReLUs is NP-Complete.
 - DNN \mathcal{N} , property ϕ (conjunction of linear constraints on input and output)
 - ϕ is satisfiable on \mathcal{N} if there exists an assignment α , such that $\alpha(output) = \mathcal{N}(\alpha(input))$, and α satisfies ϕ
- $\bullet\,$ membership is easy; the witness can be simulated on ${\mathcal N}\,$
- for NP-hardness, we show that 3-SAT can be reduced to this

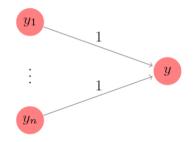
Disjunction gadget



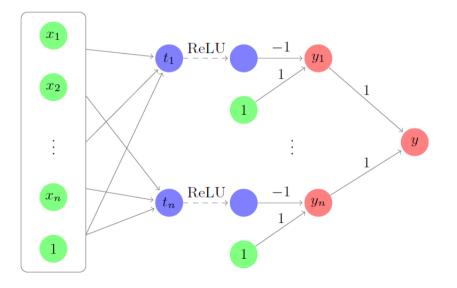
Negation gadget



Conjunction gadget



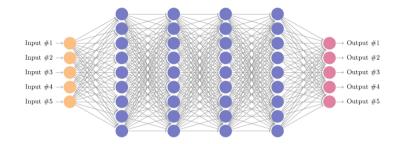
Reduction



Abstraction-Refinement (CAV 2020) A well-known story in formal verification

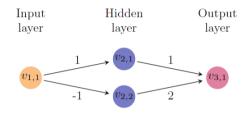
- replace the DNN ${\mathcal N}$ by a "smaller" (abstract) network $\overline{{\mathcal N}}$
- verify $\overline{\mathcal{N}};$ by construction, if $\overline{\mathcal{N}}$ meets the spec, so does \mathcal{N}
- if $\overline{\mathcal{N}}$ fails to meet the spec, there must be counterexample x
- if x is actual, \mathcal{N} violates the spec
- else refine $\overline{\mathcal{N}}$ (little more accurate, and "larger")
- done using the spurious x (Counterexample-Guided Abstraction Refinement, or CEGAR)
- https://arxiv.org/abs/1910.14574

Background: Neural Networks



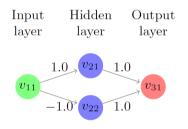
- feedforward neural network (missing: edge weights and activation function)
- evaluate a neuron: compute weighted sum, and apply activation function
- $\operatorname{ReLU}(x) = \max(0, x)$, called Rectified Linear Unit

An example



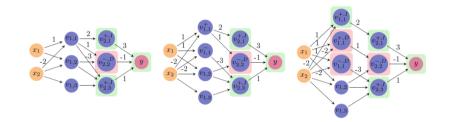
- three layers; input $v_{1,1}$ is 3
- node $v_{2,1}$ evaluates to 3, and node $v_{2,2}$ evaluates to 0
- output node $v_{3,1}$ evaluates to 3

- precondition $\mathcal P_{\text{r}}$ postcondition $\mathcal Q_{\text{r}}$ network $\mathcal N$
- is there an input x that satisfies $\mathcal{P}(x)$ and $\mathcal{Q}(y)$, where $y = \mathcal{N}(x)$
- assumptions made in this paper:
 - (on $\ensuremath{\mathcal{N}}\xspace)$ only ReLU activation functions; single output node
 - (on \mathcal{P}) conjunctions of linear constraints on input values
 - (on Q) y > c, for a given constant c
- not as limiting as it may seem (let us come back to this in the end)



- transform the neural network \mathcal{N} into $\overline{\mathcal{N}}$, such that $\mathcal{N}(x) \leq \overline{\mathcal{N}}(x)$, for every input x
- if abstract is safe $(\overline{\mathcal{N}}(x) \leq c)$, then so is the concrete $(\mathcal{N}(x) \leq c)$
- abstraction-refinement: merging neurons (and then splitting back)
- but not on \mathcal{N} (on an equivalent network \mathcal{N}'')

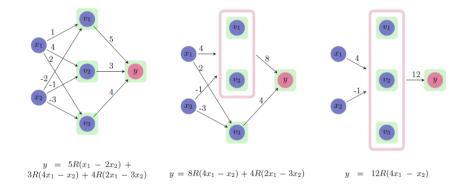
$\mathcal{N} \to \mathcal{N}' \to \mathcal{N}''$ (all equivalent)



- every hidden neuron should either be pos or neg
- based on weights of outgoing edges; split if needed (\mathcal{N}')
- also, every neuron must be inc or dec; split if needed
- depending on whether increasing (or decreasing) its value results in an increased output (traversing backwards)

- merges a pair of neurons; can be done multiple times
- merge only if the pos/neg and inc/dec attributes are same
- for the (pos, inc) and (neg, inc) case
 - take max of incoming, and sum of outgoing
- \bullet for the (pos, dec) and (neg, dec) case
 - take min of incoming, and sum of outgoing
- intuitively, the new node contributes more to the output (than the two original nodes)

An example

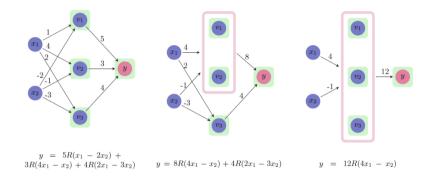


• abstraction is independent of the order in which it was done

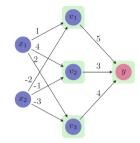
- of course, if the abstraction is too coarse
- suppose $\mathcal{N}(x_0) = 3$, $\overline{\mathcal{N}}(x_0) = 8$, and the property is $\overline{\mathcal{N}}(x) \le 6$
- need to refine $\overline{\mathcal{N}}$ into $\overline{\mathcal{N}}'$, such that for every x, $\mathcal{N}(x) \leq \overline{\mathcal{N}}'(x) \leq \overline{\mathcal{N}}(x)$
- refine picks a concrete neuron from an abstract neuron, and puts it back in the network

- apply abstraction to saturation (to at most 4 neurons in every hidden layer)
- can be controlled based on certain heuristics
- inaccuracies by caused by the max and min operators
- merge neurons that approximate least; split one that restores the most

Merging heuristics

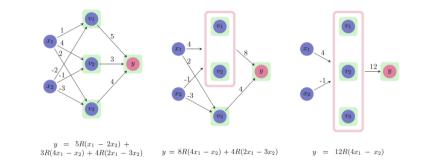


- merge: maximal value of |a b| (over all incoming edges with weights a and b) is minimal
- the new edge is "closest" to the replaced ones (saving a neuron anyway!)

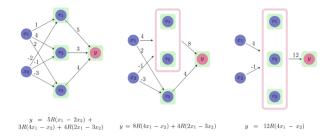


- merging (v_1, v_2) , the (a, b) pairs are: (1,4), (-2, -1)
- max(|1-4|, |-2-(-1)|) = 3
- merging (v₁, v₃), the (a, b) pairs are: (1,2), (-2, -3)
- max(|1-2|, |-2-(-3)|) = 1
- merging (v₂, v₃), the (a, b) pairs are: (4,2), (-1, -3)
- max(|1-2|, |-2-(-3)|) = 2
- merge (v_1, v_3) first

Splitting heuristics



- split: v from \overline{v} , by considering
 - edge-weight difference between v and \overline{v}
 - difference between v(x) and $\overline{v}(x)$, for the counterexample x

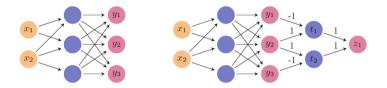


- consider the counterexample $(x_1 = 1, x_2 = 0)$
- original neurons' evaluation: $(v_1 = 1, v_2 = 4, v_3 = 2)$
- abstract neuron's evaluation: $(\overline{v}=4)$
- wt. diff. (between v_1 and \overline{v}) for in-edge from x_1, x_2 : 3, 1
- wt. diff. (between v_2 and \overline{v}) for in-edge from x_1, x_2 : 0, 0
- wt. diff. (between v_3 and \overline{v}) for in-edge from x_1, x_2 : 2, 2
- remove v_1 , (wt. diff * val. diff.) is largest: (9, 0, 4)

Algorithm 1. Abstraction-based DNN Verification(N, P, Q)

- 1: Use abstract to generate an initial over-approximation \bar{N} of N
- 2: if $Verify(\bar{N}, P, Q)$ is UNSAT then
- 3: return UNSAT
- 4: else
- 5: Extract counterexample c
- 6: **if** c is a counterexample for N **then**
- 7: return SAT
- 8: else
- 9: Use refine to refine \bar{N} into \bar{N}'
- 10: $\bar{N} \leftarrow \bar{N}'$
- 11: Goto step 2
- 12: end if
- 13: end if

Reducing a complex property (in the desired form)



- consider the property $(y_2 > y_1) \lor (y_2 > y_3)$
- encoded by adding neurons t_1 , t_2 , and z_1
- $t_1 = \max(0, y_2 y_1)$
- $t_2 = \max(0, y_2 y_3)$
- $z_1 = t_1 + t_2$
- property: $z_1 > 0$ (*iff* $t_1 > 0 \lor t_2 > 0$)

- 45 DNNs from ACAS
- input is a set of sensor readings (speed, direction, location, etc.)
- five output neurons possible turning advisories (left, right, clear-of-conflict, etc.)
- each DNN has 300 hidden neurons, across 6 hidden layers (leading to 1200 neurons after the transformation)

- abstraction to saturation outperforms indicator-guided abstraction
- avg. 269 nodes were needed to prove (the original has 310)
- "simpler" queries may sometimes be better than smaller networks
- reconfirmed in another set of experiments: even though network size increased (to avg. 385, from 310), abstracted versions were easier to verify that the original
- even further reduction on adversarial robustness properties

Modifying DNNs (LPAR 2020): Motivation

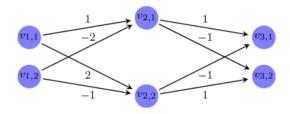
- change an existing DNN in a "small" way
- DNNs may have a bug (an undesirable behavior) that needs fixing
- should not impact the other functionality significantly
- one may retrain, but it is expensive and may lead to a very different DNN

• network N, precondition P, and postcondition Q

• does there exist an input x such that P(x) and Q(y) hold, where y = N(x)

Definition 1. The DNN Modification Problem. Let N denote a DNN, let X denote a set of fixed input points $X = \{x_1, \ldots, x_n\}$, and let Q denote a predicate over the classifications $N(x_1), \ldots, N(x_n)$ of the points of X. The DNN modification problem is to find a new DNN, N', such that $Q(N'(x_1), \ldots, N'(x_n))$ holds, and such that the distance between N and N' is at most some $\delta > 0$.

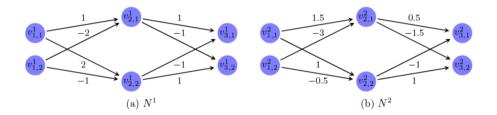
Example



• let
$$X = \{\langle 3,4 \rangle\}$$
 and $Q(N'(\langle 3,4 \rangle)) = v_{3,1} \ge v_{3,2}$

DNN Distance

• DNNs of identical topology

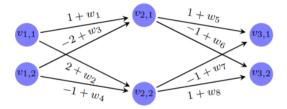


$$\begin{split} \left\| N^{1} - N^{2} \right\|_{1} &= \left(\left| -0.5 \right| + \left| 1 \right| + \left| 1 \right| + \left| -0.5 \right| + \left| 0.5 \right| + \left| 0.5 \right| + 0 + 0 \right) = 4 \\ \left\| N^{1} - N^{2} \right\|_{\infty} &= \max \left\{ \left| -0.5 \right|, \left| 1 \right|, \left| 1 \right|, \left| -0.5 \right|, \left| 0.5 \right|, \left| 0.5 \right|, 0, 0 \right\} = 1 \end{split}$$

- find the closest N' that solves the DNN Modification Problem
- repeatedly solving the modification problem as part of a binary search
- optimization problem, but highly non-convex and high-dimensional

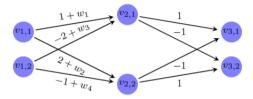
Example

• let
$$X = \{ \langle 3, 4 \rangle \}$$
 and $Q(N'(\langle 3, 4 \rangle)) = v_{3,1} \ge v_{3,2}$



 $\begin{aligned} v_{3,1} &= (1+w_5) \cdot \text{ReLU}(3(1+w_1) + 4(-2+w_3)) + (-1+w_7) \cdot \text{ReLU}(3(2+w_2) + 4(-1+w_4)) \\ v_{3,2} &= (-1+w_6) \cdot \text{ReLU}(3(1+w_1) + 4(-2+w_3)) + (1+w_8) \cdot \text{ReLU}(3(2+w_2) + 4(-1+w_4)) \end{aligned}$

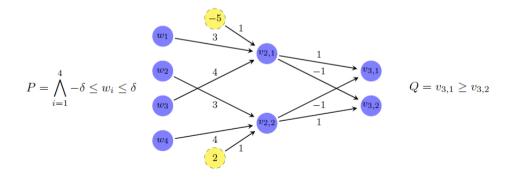
Single layer modification



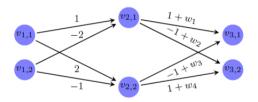
$$\begin{aligned} v_{3,1} &= \operatorname{ReLU}(3(1+w_1)+4(-2+w_3)) - \operatorname{ReLU}(3(2+w_2)+4(-1+w_4)) \\ &= \operatorname{ReLU}(3w_1+4w_3-5) - \operatorname{ReLU}(3w_2+4w_4+2) \\ v_{3,2} &= -\operatorname{ReLU}(3(1+w_1)+4(-2+w_3)) + \operatorname{ReLU}(3(2+w_2)+4(-1+w_4)) \\ &= -\operatorname{ReLU}(3w_1+4w_3-5) + \operatorname{ReLU}(3w_2+4w_4+2) \end{aligned}$$

Single layer modification as DNN verification

$$\begin{split} v_{3,1} &= \operatorname{ReLU}(3(1+w_1)+4(-2+w_3)) - \operatorname{ReLU}(3(2+w_2)+4(-1+w_4)) \\ &= \operatorname{ReLU}(3w_1+4w_3-5) - \operatorname{ReLU}(3w_2+4w_4+2) \\ v_{3,2} &= -\operatorname{ReLU}(3(1+w_1)+4(-2+w_3)) + \operatorname{ReLU}(3(2+w_2)+4(-1+w_4)) \\ &= -\operatorname{ReLU}(3w_1+4w_3-5) + \operatorname{ReLU}(3w_2+4w_4+2) \end{split}$$



Output layer modification



Thank you!