
Neural Network Verification

Kumar Madhukar

Department of Computer Science and Engineering
Indian Institute of Technology Delhi

IITD Winter Systems School 2023

December 7, 2023

1 / 57

Reluplex (CAV 2017)

• based on the Simplex algorithm, extended to handle non-linear ReLU activation function

• motivation: DNNs are widely being used on real world problems, for doing complex tasks
such as speech recognition, image classification, game playing, etc.

• safety and business-critical applications require formal guarantees

• verifying DNNs with ReLUs is NP-complete

• https://arxiv.org/abs/1702.01135

2 / 57

https://arxiv.org/abs/1702.01135

Simplex method

• algorithm for linear programming (a technique for optimizing a linear objective function,
given some linear equalities and inequalities over reals)

• decision problem – general Simplex

• accepts two kinds of constraints: equalities, and (optionally) lower/upper bounds

• example:

x + y ≥ 2 ∧ 2x − y ≥ 0 ∧ − x + 2y ≥ 1

x + y − s1 = 0 ∧ 2x − y − s2 = 0 ∧ − x + 2y − s3 = 0
s1 ≥ 2 ∧ s2 ≥ 0 ∧ s3 ≥ 1

3 / 57

Example

4 / 57

Example

5 / 57

Example

6 / 57

Rectified Linear Units, ReLUs

• popular; piecewise linearity allows DNNs to generalize well

• relu(x) = max(0, x)

7 / 57

Toy example (from the introductory lecture)

• Is it possible that v11 ∈ [0, 1] and v31 ∈ [0.5, 1]?

8 / 57

ReLUs as variable pairs

• backward (weighted sum) variables, and
forward (activation function) variables

9 / 57

Backtracking algorithm, with case-splitting

• Linear programs (LP’s) are easier to solve

• Piecewise linear constraints are reducible to LP’s

• Backtracking algorithm:

• fix each relu to active or inactive state

• solve the resulting linear program

• if a solution is found, we are done

• otherwise, backtrack and try another option

• options exponential in the number of relu nodes

10 / 57

Reluplex

• extends the Simplex method

• does not require case-splitting in advance

• splitting only if necessary (heuristic based)

11 / 57

Revisiting Simplex

12 / 57

Reluplex: example

13 / 57

Case-splitting

• not needed for this toy example, but can become necessary

• the same relu pair may keep breaking

• if that happens beyond a threshold, split

• solve the active and inactive cases separately

• (vb
ij ≥ 0) ∧ (v f

ij = vb
ij)

• (vb
ij < 0) ∧ (v f

ij = 0)

• if any of them reach a solution, it is done

14 / 57

Reluplex derivation rules

15 / 57

Reluplex algorithm: Efficient Implementation

• bound tightening (tighter upper/lower bounds can eliminate ReLUs)

x = y + z
x ≥ −2
y ≥ 1
z ≥ 1

derives: x ≥ 2

16 / 57

Reluplex algorithm: Efficient Implementation

• conflict analysis
• bound tightening → contradictions (lb.x > ub.x) → backtracking

• floating-point arithmetic (round-off errors are kept small)

• standard way is to use precise computation (avoids round-off errors and ensures
soundness)

17 / 57

Properties of interest

• no unnecessary turning advisories

• alterting regions are consistent, symmetric

• no strong alerts for large vertical separation

18 / 57

Properties: Example 1

• if the intruder is near, and approaching from the left, the network advises strong right

• distance: 12000 ≤ ρ ≤ 62000

• angle to intruder: 0.2 ≤ θ ≤ 0.4

19 / 57

Properties: Example 2

• if the vertical separation is large and the previous advisory is weak left, the network
advises weak left

• time to loss of vertical separation, τ : 100

• distance: 0 ≤ ρ ≤ 60760

• counterexample found: 11 hours 8 minutes

20 / 57

Experiments

21 / 57

Comparison to SMT and LP solvers

• results on 2 networks, 8 simple properties, timeout 14400s

• SMT solvers suffer from: precise arithmetic, lack of direct support for ReLUs

• Gurobi solved faster, but only instances that didn’t need case-splitting

22 / 57

Complexity of the verification task

• Verifying properties in DNNs with ReLUs is NP-Complete.

• DNN N, property ϕ (conjunction of linear constraints on input and output)

• ϕ is satisfiable on N if there exists an assignment α, such that
α(output) = N(α(input)), and α satisfies ϕ

• membership is easy; the witness can be simulated on N

• for NP-hardness, we show that 3-SAT can be reduced to this

23 / 57

Disjunction gadget

24 / 57

Negation gadget

25 / 57

Conjunction gadget

26 / 57

Reduction

27 / 57

Abstraction-Refinement (CAV 2020) A well-known story in formal verification

• replace the DNN N by a ”smaller” (abstract) network N

• verify N; by construction, if N meets the spec, so does N

• if N fails to meet the spec, there must be counterexample x

• if x is actual, N violates the spec

• else refine N (little more accurate, and ”larger”)

• done using the spurious x
(Counterexample-Guided Abstraction Refinement, or CEGAR)

• https://arxiv.org/abs/1910.14574

28 / 57

https://arxiv.org/abs/1910.14574

Background: Neural Networks

• feedforward neural network (missing: edge weights and activation function)

• evaluate a neuron: compute weighted sum, and apply activation function

• ReLU(x) = max(0,x), called Rectified Linear Unit

29 / 57

An example

• three layers; input v1,1 is 3

• node v2,1 evaluates to 3, and node v2,2 evaluates to 0

• output node v3,1 evaluates to 3

30 / 57

Verification

• precondition P, postcondition Q, network N

• is there an input x that satisfies P(x) and Q(y), where y = N(x)

• assumptions made in this paper:

• (on N) - only ReLU activation functions; single output node

• (on P) - conjunctions of linear constraints on input values

• (on Q) - y > c , for a given constant c

• not as limiting as it may seem (let us come back to this in the end)

31 / 57

Recall the toy example

32 / 57

Abstraction

• transform the neural network N into N, such that N(x) ≤ N(x), for every input x

• if abstract is safe (N(x) ≤ c), then so is the concrete (N(x) ≤ c)

• abstraction-refinement: merging neurons (and then splitting back)

• but not on N (on an equivalent network N′′)

33 / 57

N → N′ → N′′ (all equivalent)

• every hidden neuron should either be pos or neg

• based on weights of outgoing edges; split if needed (N′)

• also, every neuron must be inc or dec; split if needed

• depending on whether increasing (or decreasing) its value results in an increased output
(traversing backwards)

34 / 57

The abstract operator

• merges a pair of neurons; can be done multiple times

• merge only if the pos/neg and inc/dec attributes are same

• for the (pos, inc) and (neg, inc) case
• take max of incoming, and sum of outgoing

• for the (pos, dec) and (neg, dec) case
• take min of incoming, and sum of outgoing

• intuitively, the new node contributes more to the output (than the two original nodes)

35 / 57

An example

• abstraction is independent of the order in which it was done

36 / 57

The need to refine

• of course, if the abstraction is too coarse

• suppose N(x0) = 3, N(x0) = 8, and the property is N(x) ≤ 6

• need to refine N into N
′
, such that for every x , N(x) ≤ N

′
(x) ≤ N(x)

• refine picks a concrete neuron from an abstract neuron, and puts it back in the network

37 / 57

More about the abstraction

• apply abstraction to saturation (to at most 4 neurons in every hidden layer)

• can be controlled based on certain heuristics

• inaccuracies by caused by the max and min operators

• merge neurons that approximate least; split one that restores the most

38 / 57

Merging heuristics

• merge: maximal value of |a− b| (over all incoming edges with weights a and b) is
minimal

• the new edge is ”closest” to the replaced ones (saving a neuron anyway!)

39 / 57

• merging (v1, v2), the (a, b) pairs are: (1,4), (-2, -1)
• max(|1− 4| ,

∣∣−2− (−1)
∣∣) = 3

• merging (v1, v3), the (a, b) pairs are: (1,2), (-2, -3)
• max(|1− 2| ,

∣∣−2− (−3)
∣∣) = 1

• merging (v2, v3), the (a, b) pairs are: (4,2), (-1, -3)
• max(|1− 2| ,

∣∣−2− (−3)
∣∣) = 2

• merge (v1, v3) first
40 / 57

Splitting heuristics

• split: v from v , by considering

• edge-weight difference between v and v

• difference between v(x) and v(x), for the counterexample x

41 / 57

• consider the counterexample (x1 = 1, x2 = 0)

• original neurons’ evaluation: (v1 = 1, v2 = 4, v3 = 2)
• abstract neuron’s evaluation: (v = 4)

• wt. diff. (between v1 and v) for in-edge from x1, x2: 3, 1
• wt. diff. (between v2 and v) for in-edge from x1, x2: 0, 0
• wt. diff. (between v3 and v) for in-edge from x1, x2: 2, 2

• remove v1, (wt. diff ∗ val. diff.) is largest: (9, 0, 4)
42 / 57

The complete CEGAR algorithm

43 / 57

Reducing a complex property (in the desired form)

• consider the property (y2 > y1) ∨ (y2 > y3)

• encoded by adding neurons t1, t2, and z1

• t1 = max(0, y2 − y1)

• t2 = max(0, y2 − y3)

• z1 = t1 + t2
• property: z1 > 0 (iff t1 > 0 ∨ t2 > 0)

44 / 57

Experiments

• 45 DNNs from ACAS

• input is a set of sensor readings (speed, direction, location, etc.)

• five output neurons - possible turning advisories (left, right, clear-of-conflict, etc.)

• each DNN has 300 hidden neurons, across 6 hidden layers (leading to 1200 neurons after
the transformation)

45 / 57

Findings

• abstraction to saturation outperforms indicator-guided abstraction

• avg. 269 nodes were needed to prove (the original has 310)

• “simpler” queries may sometimes be better than smaller networks

• reconfirmed in another set of experiments: even though network size increased (to avg.
385, from 310), abstracted versions were easier to verify that the original

• even further reduction on adversarial robustness properties

46 / 57

Modifying DNNs (LPAR 2020): Motivation

• change an existing DNN in a “small” way

• DNNs may have a bug (an undesirable behavior) that needs fixing

• should not impact the other functionality significantly

• one may retrain, but it is expensive and may lead to a very different DNN

47 / 57

DNN Verification Problem

• network N, precondition P, and postcondition Q

• does there exist an input x such that P(x) and Q(y) hold, where y = N(x)

48 / 57

DNN Modification Problem

49 / 57

Example

• let X = {⟨3, 4⟩} and Q(N ′(⟨3, 4⟩)) = v3,1 ≥ v3,2

50 / 57

DNN Distance

• DNNs of identical topology

51 / 57

Minimal Modification

• find the closest N ′ that solves the DNN Modification Problem

• repeatedly solving the modification problem as part of a binary search

• optimization problem, but highly non-convex and high-dimensional

52 / 57

Example

• let X = {⟨3, 4⟩} and Q(N ′(⟨3, 4⟩)) = v3,1 ≥ v3,2

53 / 57

Single layer modification

54 / 57

Single layer modification as DNN verification

55 / 57

Output layer modification

56 / 57

Thank you!

57 / 57

