
systems-rg.github.io

Understanding and Exploiting
Optimal Function Inlining

Theodoros Theodoridis, Tobias Grosser, Zhendong Su

Systems Reading Group 2022

Discussion Lead : Sorav Bansal

Compiler Optimization : Why bother?

- Proebsting’s Law: Compiler
Advances Double Computing
Power Every Twenty Years

- This paper will show
improvements of 1-15%

- Quoting venturebeat: … expects “an
explosion” in the importance and adoption of tools
like PyTorch’s JIT compiler and neural network
hardware accelerators like Glow

- Huge compiler teams at hardware
companies: Intel, Qualcomm,
AMD, nVIDIA, Microsoft, Google,
…

For Against

https://pytorch.org/docs/master/jit.html
https://github.com/pytorch/glow

Compiler Optimization : Why bother?

Compiler Optimization Research Will Drive Innovations in Computer Systems for
the next 50 years

Sorav’s Law, stated in 2022 ;)

Which Compiler Optimizations Matter?

Which Compiler Optimizations Matter Most?

- Inlining
- Vectorization (SIMD)
- Scheduling for Parallelization
- Scheduling for Locality
- Register Allocation
- Loop Invariant Code Motion
- Common Subexpression Elimination
- Dead Code Elimination
- Constant Propagation
- Peephole Optimizations…

Typical Improvement

X

Typical Frequency of Occurrence

Which Compiler Optimizations Matter Most?

- Inlining
- Vectorization (SIMD)
- Scheduling for Parallelization
- Scheduling for Locality
- Register Allocation
- Loop Invariant Code Motion
- Common Subexpression Elimination
- Dead Code Elimination
- Constant Propagation
- Peephole Optimizations…

- Inlining of Operators
- Auto-Distribution
- Auto-Parallelization
- Automatic Data Placement
- Automatic Cache Management
- Memoization
- Common Subexpression Elimination
- Dead Code Elimination
- Constant Propagation
- Peephole Optimizations…

Traditional Modern

Inlining : One of the Most Consequential Transformations

class Foo {

private:

 int m = 0;

public:

 int get_m() const { return m; }

 void inc_m() { m++; }

 …

}

Foo foo;

for (; foo.get_m() < n;

 foo.inc_m())

{

 …

}

Inlining is often a prerequisite for transformations like loop vectorization

Inlining is More Consequential in Higher Level Languages

- Utility Functions (C)
- Getters and Setters (C++, etc.)
- Lambdas (C++, etc.)
- Custom Operators (e.g., Map/Reduce) that accept arbitrary functions
- Stream Processing Languages

- Stream operators composed in sequence can be inlined into optimized sequential code
- Examples of a follow-up transformation: Operator Scheduling, Parallelization/Vectorization

- Neural Network Languages like Tensorflow
- Inline Neural Network Operators composed in sequence
- Examples of a follow-up transformation: Polyhedral transformations, Parallel/Vectorization

Up to 10% performance
degradation
(unpredictable)

Conclusion: Inlining
heuristics are fragile

This paper…

- Understanding Optimal Function Inlining

- Exploiting it

- More Inlining → More Optimization Opportunities (e.g., Dead Code Elim.)
- More Inlining → More Code Bloat

Focus on Code Size (-Os)

Inlining Example

Understanding Optimal Function Inlining (LLVM -Os)

SPEC CPU 2017

Identifying the Optimal Inlining Configuration is NP-Hard

- State of the Practice: Heuristics (e.g., size of callee)

- Research Ideas: “Inlining Trials” during Compiler Optimization

- Idea: “Put Inlining Trials on Steroids”, but during an offline phase that can
take tens of hours on hundreds of CPUs

- What is the best algorithm to identify the optimal inlining configuration (even though
exponential time)

- What insight does it provide? Can the insights be used to identify a fully parallel algorithm that

Inlining Search Space

- Identify Inlinable Functions (e.g., no recursion)
- Construct a call graph (e.g., if foo() calls bar() and baz(), and bar() calls

baz2()) . Label each edge as “inline” or “no-inline” (exponential space)
- Naive algorithm: O(2|E|)
- This assumes “coupled inlining decisions”

- If (bar→baz) is inlined, then it would be inlined everywhere
- e.g., (foobar→ baz) and (foo2bar→baz) will be inlined

Improvement: Separate into CCs (Connected Components)

Recursively Partitioned Search Space

Recursively Partitioned Search Space

Recursively Partitioned Search Space

Choice of Bridge Edge

- Determines the size of the Search Space
- Heuristically choose the bridge edge to try and divide the call graph into many

independent components of roughly equal size
- Edge incident to least eccentric vertex

- Vertex with least maximum distance from any other vertex

Search Space Reduction

Comparison with LLVM Heuristics

In 23.7% cases, LLVM’s heuristic is inlining too aggressively

Max number of inlinable calls=1135; Max search space=218

Length of Inlined Call Chains
Max number of inlinable calls=1135; Max search space=218

Observation

- Optimal configurations have small length inlined call chains

- Redefine the search space : consider only those cases where the optimal is
- Either no-inline for all edges
- Or has inlined call-chains of less than 1

- Identify an efficient embarrassingly-parallel algorithm that can identify the optimal in this redefined
search space; and see how it works for other cases (outside this redefined search space)

Autotuner Algorithm

Start with a call graph, say CG

For each edge (in parallel)

- Inline that edge in CG, and perform the rest of the compiler transformations
- See if the inlining of the edge reduced the code size. If yes, mark that edge

as “inline” in the final solution

Suboptimal if the inlining of either “A” or “B” reduces (increases) code
size, but inlining of both “A” and “B” increases (reduces) code size

Autotuner Algorithm

Start with a call graph, say CG

For each edge (in parallel)

- Inline that edge in CG, and perform the rest of the compiler transformations
- See if the inlining of the edge reduced the code size. If yes, mark that edge

as “inline” in the final solution

One round

Initial CG Round1 Round2 Round3 Round4

Single Round Results (starting from clean slate)

Single Round Results (starting from “llvm -Os” output)

Starting from clean-slate is often better than starting from
“llvm -Os”

Multiple Rounds

Example of the Effect of Multiple Rounds

More Results

- LLVM
- 84.74% of “LLVM -Os”
- Took 44-53 hours of auto-tuning

- SQLite
- X86 backend : 89.7% of “LLVM -Os”
- WASM backend: 98.74% of “LLVM -Os”. Why such less improvement for WASM?

- Mean slowdowns of 3.6% on SPEC benchmarks

Take-Aways

- Heuristic Recursive Partitioning is interesting and effective
- A Gold-Standard for Inlining Research
- Can be used for “training ML models”
- Exhaustive Search for Performance

- Let’s not be afraid of Exponentials anymore

