systems-rg.github.io

program synthesis

S bovel dign proof & type

verification

browser security

system ml system R S

software system programming Ianguage computer architecturs

secure information flow Lo e
cloud Computing certification
et ambedded system

hpc

Secunty system software EﬂgiHEETing of software

hardware system

design

compiler optimization

Systems Reading Group 2022

Understanding and Exploiting
Optimal Function Inlining

Theodoros Theodoridis, Tobias Grosser, Zhendong Su

Discussion Lead : Sorav Bansal

Compiler Optimization : Why bother?

- Proebsting’s Law: Compiler - Quoting venturebeat: ... expects “an
Advances Double Computing explosion” in the importance and adoption of tools
like PyTorch’s JIT compiler and neural network
Power Evel’y Twenty Years hardware accelerators like Glow
- This paper will show - Huge compiler teams at hardware
improvements of 1-15% companies: Intel, Qualcomm,
AMD, nVIDIA, Microsoft, Google,

For Against

https://pytorch.org/docs/master/jit.html
https://github.com/pytorch/glow

Compiler Optimization : Why bother?

Compiler Optimization Research Will Drive Innovations in Computer Systems for
the next 50 years

Sorav’s Law, stated in 2022 ;)

Which Compiler Optimizations Matter?

Which Compiler Optimizations Matter Most?

- Inlining

- Vectorization (SIMD)

- Scheduling for Parallelization Typical Improvement
- Scheduling for Locality

- Register Allocation X

- Loop Invariant Code Motion

- Common Subexpression Elimination
- Dead Code Elimination

- Constant Propagation

- Peephole Optimizations...

Typical Frequency of Occurrence

Which Compiler Optimizations Matter Most?

Inlining

Vectorization (SIMD)

Scheduling for Parallelization
Scheduling for Locality

Register Allocation

Loop Invariant Code Motion
Common Subexpression Elimination
Dead Code Elimination

Constant Propagation

Peephole Optimizations...

Inlining of Operators
Auto-Distribution
Auto-Parallelization

Automatic Data Placement
Automatic Cache Management
Memoization

Common Subexpression Elimination
Dead Code Elimination

Constant Propagation

Peephole Optimizations...

Traditional

Modern

Inlining : One of the Most Consequential Transformations

class Foo { Foo foo;
private:

intm = 0; for (; foo.get_ m() <n;
public: foo.inc_m())

int get._m() const { return m; } {

void inc_m() { m++; }

Inlining is often a prerequisite for transformations like loop vectorization

Inlining is More Consequential in Higher Level Languages

- Utility Functions (C)

- Getters and Setters (C++, etc.)

- Lambdas (C++, etc.)

- Custom Operators (e.g., Map/Reduce) that accept arbitrary functions

- Stream Processing Languages

- Stream operators composed in sequence can be inlined into optimized sequential code

- Examples of a follow-up transformation: Operator Scheduling, Parallelization/Vectorization
- Neural Network Languages like Tensorflow

- Inline Neural Network Operators composed in sequence
- Examples of a follow-up transformation: Polyhedral transformations, Parallel/Vectorization

nadav.amit.zone/linux/2018/10/10/newline.html

Nadav Amit Contact Service

plo 1o periormance How new-lines affect the Linux kernel

degradation

(unpredictable) performance

Oct 10,2018

The Linux kernel strives to be fast and efficient. As it is written mostly in C, it can mostly control how the
generated machine code looks. Nevertheless, as the kernel code is compiled into machine code, the
compiler optimizes the generated code to improve its performance. The kernel code, however, employs
uncommon coding techniques, which can fail code optimizations. In this blog-post, | would share my
experience in analyzing the reasons for poor code inlining of the kernel code. Although the performance
improvement are not significant in most cases, understanding these issues are valuable in preventing

Conclusion: Inlining
them from becoming larger. New-lines, as promised, will be one of the reasons, though not the only one.

heuristics are fragile

New lines in inline assembly

One fine day, | encountered a strange phenomenon: minor changes | performed in the Linux source code,
caused small but noticeable performance degradation. As | expected these changes to actually improve
performance, | decided to disassemble the functions which | changed. To my surprise, | realized that my
change caused functions that were previously inlined, not to be inlined anymore. The decision not to
inline these functions seem dubious as they were short.

This paper...

Understanding Optimal Function Inlining

Exploiting it

Focus on Code Size (-Os)

More Inlining — More Optimization Opportunities (e.g., Dead Code Elim.)
More Inlining — More Code Bloat

Inlining Example

int bar(int a) {
return a + a;

int foo(int n) {

for (int i = 0; i < n; ++i)

{
if (bar(i) == 1)
return 0;
k)

return 1;

Listing 1: Source Code

foo:
xorl %eax, %eax
testl %edi, %edi
setle Z%al
retq

Listing 2: foo inlined

foo:

pushq %rbp

pushq %r14

pushqg %rbx

movl $1, %r14d
testl %edi, %edi
jle .LBB1_5
movl %edi, %ebp
xorl %ebx, %ebx

+LBB1_3::
movl %ebx, %edi
callq bar
cmpl %eax, %ebx
je .LBB1_4

addl $1, %ebx
cmpl %ebx, %ebp

jne .LBB1_3

jmp .LBB1_5
.LBB1_4:

xorl %ri14d, %ri14d
S1:BBA.15:%

movl %r14d, %eax

popq %rbx

popq %rl14

popq %rbp

retq

Listing 3: foo not inlined

Understanding Optimal Function Inlining (LLVM -QOs)

Size change due to inlining (%) 2

63 64 66 64
60 59 s5g b2 & 56 i 53 56 55 L. B
50% 44 42
30
0%
N s O N & Q D N Ay " XN
IS N IFFEF L L 8 o8 & &
S & &5 ST T T 0 g5 o8 & ¥ 8
9 é\? Q/Q § & = § Q \,OQ
> g e Q >
G X

SPEC CPU 2017

|dentifying the Optimal Inlining Configuration is NP-Hard

State of the Practice: Heuristics (e.g., size of callee)

Research ldeas: “Inlining Trials” during Compiler Optimization

Idea: “Put Inlining Trials on Steroids”, but during an offline phase that can

take tens of hours on hundreds of CPUs
What is the best algorithm to identify the optimal inlining configuration (even though
exponential time)
What insight does it provide? Can the insights be used to identify a fully parallel algorithm that

Inlining Search Space

- ldentify Inlinable Functions (e.g., no recursion)
- Construct a call graph (e.g., if foo() calls bar() and baz(), and bar() calls
baz2()) . Label each edge as “inline” or “no-inline” (exponential space)
- Naive algorithm: O(2/Fl)
- This assumes “coupled inlining decisions”
- If (bar—baz) is inlined, then it would be inlined everywhere
- e.g., (foobar— baz) and (foo2bar—baz) will be inlined
beas,

balt

Improvement: Separate into CCs (Connected Components)

AN «— (O =«—

Component Inlining Configurations

F— G G—oK
no-inline no-inline
no-inline inline

inline no-inline
inline inline

H—o L

no-inline

inline

Recursively Partitioned Search Space

@/ s /aé

@ O

Recursively Partitioned Search Space

S
Q 3
fg 0
@ " Q Ny

Recursively Partitioned Search Space
O (>

B A
f{ Qﬁgf}&o -

L

£

06

(a) original (b) K — L not inlined (¢) K — L inlined

(K — L) = inline K — L) = noinline

(H—I)
= inline

H — I) = noinline S VI T ey v

(G —+ K) = inline =+ notnline

(G —+ K} = noinline

\/

Choice of Bridge Edge

- Determines the size of the Search Space
- Heuristically choose the bridge edge to try and divide the call graph into many

independent components of roughly equal size

Edge incident to least eccentric vertex
Vertex with least maximum distance from any other vertex

Search Space Reduction

Per file size percentiles (log 2)
Search Space

Median 75th 95th Max

Geometric Mean

naive 8 18 38 349
recursive 6.2 10.9 17.4 19.9

11
5.42

approximately 2°4° —

225.2

Comparison with LLVM Heuristics

Max number of inlinable calls=1135; Max search space=2"3

200%

100%

0%

A/

Size incr. >=5% (n=190)
Size incr. >=10% (n=97)

Median size incr. of
nonoptimal: 2.37%

LLVM finds 526 optimal
configurations (clipped)

In 23.7% cases, LLVM'’s heuristic is inlining too aggressively

600 700 800

900

1,000

1,100

Length of Inlined Call Chains

Max number of inlinable calls=1135; Max search space=2"3
7,379

Optimal

4,861
2 s LIVM

526 419 136 105 23 32 7 13

1 2 3 4 5 6
Number of edges in optimally inlined call-chains

Observation

- Optimal configurations have small length inlined call chains

- Redefine the search space : consider only those cases where the optimal is
Either no-inline for all edges
Or has inlined call-chains of less than 1

- ldentify an efficient embarrassingly-parallel algorithm that can identify the optimal in this redefined
search space; and see how it works for other cases (outside this redefined search space)

Autotuner Algorithm

Start with a call graph, say CG
For each edge (in parallel)

- Inline that edge in CG, and perform the rest of the compiler transformations
- See if the inlining of the edge reduced the code size. If yes, mark that edge
as “inline” in the final solution

Suboptimal if the inlining of either “A” or “B” reduces (increases) code
size, but inlining of both “A” and “B” increases (reduces) code size

Autotuner Algorithm

Start with a call graph, say CG

. One round
For each edge (in parallel)
- Inline that edge in CG, and perform the rest of the compiler transformations

- See if the inlining of the edge reduced the code size. If yes, mark that edge
as “inline” in the final solution

Initial CG ——| Round1 Round2 Round3 Round4 —

Single Round Results (starting from clean slate)

Figure 10: Autotuning (clean slate) versus LLVM -Os on
SPEC2017. Out of the 20 benchmarks: 14 shrink in size, 1
remains unchanged, and 5 inflate. The median relative size
is 97.95%. The largest benchmark size reduction is 27.6% (mfc).

Single Round Results (starting from “livm -Os” output)

Figure 12: LLVM-initialized autotuning versus LLVM -Os on
SPEC2017. Out of the 20 benchmarks: 19 shrink in size, 1
remains unchanged. The median relative size is 97.6%. The
largest benchmark size reduction is 21% (mfc).

Starting from clean-slate is often better than starting from
“llvm -Os”

Table 3: Benchmarks faring worse with LLVM-initialization.

Autotuned relative size vs LLVM -Os

Benchmark

Clean slate LLVM-initialized
imagick 92.1% 96.3%
mfc 72.4% 79%
nab 97.1% 98.8%
nambd 93.9% 95.2%
perlbench 98.9% 99.6%
x264 92.3% 94.1%

Xz 97.8% 97.9%

Multiple Rounds

B Round 4

n
Round 2

‘b) Clean slate, per round medians: 97.95% , 97.02% , 96.46% , 96.38%

Example of the Effect of Multiple Rounds

LLVM Round1 Round2 Round3 Round4

inlined 114 109 112 107 109
non inlined 35 40 37 42 40
Rel. Size 100% 71.6% 41.2% 41.4% 35.8%

Table 4: 523.xalancbmk/XalanBitmap.cpp inlining changes
across rounds of LLVM-initialized autotuning.

More Results

- LLVM

- 84.74% of “LLVM -Os”
- Took 44-53 hours of auto-tuning

- SQLite
- X86 backend : 89.7% of “LLVM -Os”
- WASM backend: 98.74% of “LLVM -Os”. Why such less improvement for WASM?

- Mean slowdowns of 3.6% on SPEC benchmarks

Take-Aways

- Heuristic Recursive Partitioning is interesting and effective
- A Gold-Standard for Inlining Research
- Can be used for “training ML models”

- Exhaustive Search for Performance
Let’s not be afraid of Exponentials anymore

