
Learning-based Memory Allocation for
C++ Server Workloads [ASPLOS 2020]

Ashish Panwar

Slides inspired by (or borrowed from):

https://www.youtube.com/watch?v=gs8m5W-xdDM

https://abelay.github.io/6828seminar/notes/6828_llama_isaac.pdf

https://www.youtube.com/watch?v=gs8m5W-xdDM
https://abelay.github.io/6828seminar/notes/6828_llama_isaac.pdf

Problem statement

• Huge pages (e.g., 2MB pages) improve performance – up to 50%
• But cause (internal) fragmentation – memory waste up to 2x

Table source: https://www.usenix.org/system/files/osdi21-hunter.pdf

https://www.usenix.org/system/files/osdi21-hunter.pdf

Fragmentation with Huge Pages

Memory allocation

Placement of long-lived objects matters

Placement of long-lived objects matters

Page size matters too!
• Assume 64B objects, 99.99% objects are short-lived
• # objects per 4KB page = 64
• # objects per 2MB page = 32,768

Page size Probability that at-least 1 object is long-lived

4KB 0.6%

2MB 96.2%

This is a common problem

Fragmentation with Huge Pages

Mitigating internal fragmentation in huge pages
requires information about object lifetimes

Paper contributions

•ML-based technique for predicting object lifetimes

• Lifetime-aware memory allocator

• Evaluation of the above two

Predicting object lifetimes
• Why conventional solutions do not work?
• Such as profile-guided optimizations (PGO)

• PGO:
• Calling context can be used to predict object lifetimes
• Instrument code to profile object lifetimes – offline
• Lifetime is classified as either short or long
• Analyze and deploy

• PGO has been used for object pre-tenuring in managed runtimes
• Place long-lived objects directly in the old generation
• Can tolerate inaccurate predictions

Challenges

PGO Limitation: Coverage

• PGO needs to have seen the context before making a prediction

• 64% of distinct allocation contexts are seen once

• 17% of all permanent allocations are from contexts that are observed
once

Combine profiling across
multiple runs Instability!

PGO Limitation: Instability

• Stack traces are brittle across executions
• Compilation under different configuration settings, library updates
• Function names and interfaces change over time
• Address space randomization

PGO Limitation: Performance

• Collecting a stack trace is expensive!

PGO is expensive and does not generalize
well enough in production settings

Contribution-1: ML-based lifetime prediction

• Train an ML model over stack traces

• Pointer-bases stack traces are valid only within a run

• Train an ML model over symbolized stack traces

Contribution-1: ML-based lifetime prediction

Contribution-1: ML-based lifetime prediction
• Symbolized stack traces capture program nesting (as a string)

• Long-short term memory (LSTM) based recurrent neural networks

• LSTMs are used for sequence prediction in natural language processing

• A natural fit for mapping symbolized stack traces to object lifetimes

• The authors use LSTMs for simplicity (other more effective ML techniques can
be explored)

Contribution-1: ML-based lifetime prediction

Contribution-1: ML-based lifetime prediction
• Input: symbolized stack traces

o Each frame in the stack trace represents a string
o Tokenize based on special characters (:: or ,)
o There is an embedding vector for each token

o Set of vectors form an embedding matrix A
o A is trained as part of the model

Contribution-1: ML-based lifetime prediction
• Sampling-based data collection – the training dataset
• Instrumenting allocation and free calls
• An allocation site is assigned 95th percentile of observed lifetimes

Lifetime prediction accuracy

Lifetime prediction generalizes well

Contribution-2: LLAMA
• LLAMA – Learned Lifetime-aware Memory Allocator

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Contribution-2: LLAMA

Performance optimization
• Avoid invoking the ML model by caching the results of prior requests
• Thread-local hashmap (key – return address, stack height, object size)
• 95% predictions are cache hits, 14% disagree with the cached value

Results

• Up to 12.5% application slowdown (image server)

Take aways
• Predicting object lifetimes with good accuracy is feasible – thanks to ML!

• Lifetime based memory allocator reduces internal fragmentation in huge
pages

• Performance optimizations (e.g., caching) can hide the overhead of ML
models

• A great example of using ML to solve systems problems!

