Learning-based Memory Allocation for
C++ Server Workloads [ASPLOS 2020]

Ashish Panwar

Slides inspired by (or borrowed from):

https://www.youtube.com/watch?v=gs8m5W-xdDM
https://abelay.github.io/6828seminar/notes /6828 llama isaac. pdf

https://www.youtube.com/watch?v=gs8m5W-xdDM
https://abelay.github.io/6828seminar/notes/6828_llama_isaac.pdf

Problem statement

* Huge pages (e.g., 2MB pages) improve performance — up to 50%
e But cause (internal) fragmentation — memory waste up to 2x

dTLB Load Walk (%)
Application Before After
Tensorflow [1]
searchl [6,18]% 9.5+0.6 9.0+0.6
search2t 10.3+0.2 10.2+0.1
search3 T 8.9+0.1 8.9+0.3
adsl 38.1+1.3 15.9+0.3
ads?2 27.44+04 10.34+0.2
ads3 27.1+£0.5 11.6+0.2
ads4 28.5+0.9 11.1+£0.3
adsb5 21.94+1.2 16.7+2.4
ads6 33.6+2.4 17.8+0.4
Spanner [17] 31.0+£4.3 15.74+1.8
loadbalancerf 19.64+1.2 9.54+4.5
Average (all WSC apps) 233 12.4

Table source: https://www.usenix.org/system/files/osdi21-hunter.pdf

https://www.usenix.org/system/files/osdi21-hunter.pdf

Memory (MB)

Fragmentation with Huge Pages

wiTinm M=
1000 “]{l ‘Ximh thlmm ‘ h”hmlu.,hu
s00(U o] | } i]: ’ 1 \ | ‘, | |

A ATAIAE it AR IR LI S “

Time (s)

Fragmentation in 4 KB pages is 1.03x
Fragmentation in 2 MB pages is 2.15x

Memory allocation

C++ Application A
string* s = new string(“6.828”); Page
e m . .
delete s: @ Lifetime
| S N
v v < o
> 1Ze
TCMalloc o
-
) i
=1(a A

Time

Placement of long-lived objects matters

A

Page 2

Memory Address

Page 1

Time

Placement of long-lived objects matters
A

|

—

Page 2

Memory Address

Wasted memory

Page 1

Time

Page size matters too!

* Assume 64B objects, 99.99% objects are short-lived
* # objects per 4KB page = 64
* # objects per 2MB page = 32,768

Probability that at-least 1 object is long-lived

4KB 0.6%
2MB 96.2%

This is a common problem

1 1
|

09 - /
[

0.8

CDF

1ms 1s llills 100s 450s
Allocation lifetime (log)

Figure 2. Long tail of object lifetimes from a single run; x-
axis is log-scale. The vast majority of objects are short-lived,
but rare long-lived objects impact fragmentation.

Memory (MB)

Fragmentation with Huge Pages

wiTinm M=
1000 “]{l ‘Ximh thlmm ‘ h”hmlu.,hu
s00(U o] | } i]: ’ 1 \ | ‘, | |

A ATAIAE it AR IR LI S “

Time (s)

Fragmentation in 4 KB pages is 1.03x
Fragmentation in 2 MB pages is 2.15x

Mitigating internal fragmentation in huge pages
requires information about object lifetimes

Paper contributions

* ML-based technique for predicting object lifetimes
* Lifetime-aware memory allocator

e Evaluation of the above two

Predicting object lifetimes

* Why conventional solutions do not work?
* Such as profile-guided optimizations (PGO)

* PGO:
* Calling context can be used to predict object lifetimes
* Instrument code to profile object lifetimes — offline
* Lifetime is classified as either short or long
* Analyze and deploy

* PGO has been used for object pre-tenuring in managed runtimes
* Place long-lived objects directly in the old generation
e Can tolerate inaccurate predictions

Challenges

O

Insufficient Stack Trace Performance
Coverage Instability Sensitivity

PGO Limitation: Coverage

* PGO needs to have seen the context before making a prediction
* 64% of distinct allocation contexts are seen once

* 17% of all permanent allocations are from contexts that are observed
once

Combine profiling across

e
multiple runs Instability!

PGO Limitation: Instability

e Stack traces are brittle across executions

* Compilation under different configuration

settings, library updates

* Function names and interfaces change over time

* Address space randomization

Version Difference

Matching/Total # Traces

Revisions 1 week apart
Revisions 5 months apart
Opt. vs. non-opt. build

20,606 / 35,336 (58.31%)
127 / 33,613 (0.38%)
43 / 41,060 (0.10%)

Table 2. Fraction of individual stack traces that match be-
tween different binary versions (using exact match of sym-

bolized function names).

PGO Limitation: Performance

* Collecting a stack trace is expensive!

TCMalloc Fast Path (new/delete)
TCMalloc Slow Path (central list)
Capture full stack trace

Look up stack hash (Section 7)

8.3 ns

81.7 ns

396 ns + 364 ns
22.5 ns

Table 1. Timescale comparisons

PGO is expensive and does not generalize
well enough in production settings

Contribution-1: ML-based lifetime prediction

* Train an ML model over stack traces
* Pointer-bases stack traces are valid only within a run

* Train an ML model over symbolized stack traces

Contribution-1: ML-based lifetime prediction

1 __gnu_cxx::__g::__string_base char, std::__g::char_traits
char,std::__g::allocator char::_M_reserve(unsigned long)

2 proto2::internal::InlineGreedyStringParser(std::__g::
basic_string char, std::__g::char_traits char,std::__g::
allocator charx,char const*,proto2::internal::ParseContext*)

3 proto2::FileDescriptorProto::_InternalParse(char constx*,
proto2::internal::ParseContextx*)

4 proto2::MessagelLite::ParseFromArray(void const*, int)

5 proto2::DescriptorPool::TryFindFileInFallbackDatabase(std::
__g::basic_string char, std::__g::char_traits char , std::
__g::allocator char const) const

6 proto2::DescriptorPool::FindFileByName(std::__g::
basic_string char, std::__g::char_traits char , std::__g::

allocator char const) const proto2::internal::
AssignDescriptors(proto2::internal::AssignDescriptorsTablex*)
7 system2::Algorithm_descriptor ()

8 system2::init_module_algorithm_parse ()

9 Initializer::TypeData::RunIfNecessary(Initializerx)
10 Initializer::RunlInitializers(char constx)

11 ReallInit(char const*, intx, char**x, bool, bool)

12 main

Figure 5. An example of an altered but representative stack
trace used to predict object lifetimes.

Contribution-1: ML-based lifetime prediction

* Symbolized stack traces capture program nesting (as a string)

e Long-short term memory (LSTM) based recurrent neural networks

e LSTMs are used for sequence prediction in natural language processing
e A natural fit for mapping symbolized stack traces to object lifetimes

* The authors use LSTMs for simplicity (other more effective ML techniques can
be explored)

Contribution-1: ML-based lifetime prediction

Solution: Language model on symbolized stack traces

Contribution-1: ML-based lifetime prediction

* Input: symbolized stack traces
o Each frame in the stack trace represents a string
o Tokenize based on special characters (:: or,)
o There is an embedding vector for each token

Object 1

/0.6 0.3 0.7 | meeme=s

Object 2 Embedding Model _—_)i 08loslos| -----
Object 3 \
04|02)|0%| ~———-
Set of Objects Objects as Vectors

o Set of vectors form an embedding matrix A
o A is trained as part of the model

Contribution-1: ML-based lifetime prediction

e Sampling-based data collection — the training dataset
* Instrumenting allocation and free calls
* An allocation site is assighed 95t percentile of observed lifetimes

Samples . e Datab
Allocation Sampling ample Database
Application . ‘ ‘

Learned allocator Model Training Lifetime

Compiled model

Figure 3. Overview of our ML-based Allocator

Embedding Embedding Embedding

Stack[0] Stack[1] Stack[2]

Lifetime prediction accuracy

Prediction Accurac
Workload Weighted Unwei gh:,ed
Image Processing Server 96% 73%
TensorFlow InceptionV3 Benchmark 98% 94%
Data Processing Pipeline 99% 78%
Redis Key-Value Store 100% 94%

Lifetime prediction generalizes well

100 oo o e e e L e

80

60

40 4

Accuracy (%)

20 +

—TTTTT —T T —TTTTrTY T
10° 10° 10° 10° 10°

Sampling Rate 1/x (log)

(a) Sampling Rate

Accuracy (%)

100

80

60

40

20

J A

Compiler Setting 5 Months off

(b) Workload Variations

Figure 10. The lifetime model generalizes to unobserved
allocation sites from different versions and compiler settings.
Blue shows accuracy per stack trace, green weighted by
allocations. Light/dotted data shows off-by-one accuracy.

Contribution-2: LLAMA

* LLAMA — Learned Lifetime-aware Memory Allocator

Allocator built around lifetime classes instead of size:

e Lifetime classes: {<10ms,<100ms,<1s,...,00}

e Allocator manages memory in huge pages

e Small objects (<8 KB) managed in 16 KB block spans
through policy similar to Immix (details in the paper)

Each huge page has a lifetime class and only contains
objects predicted to be at most this lifetime class

Contribution-2: LLAMA

Y
<10ms | .

ctooms | M
s Wl

Perform bump-pointer allocation into new pages

Huge Page

blocks e Residual Allocation LC Lifetime Class

Contribution-2: LLAMA

y
<oms il HENEEE HENENE SENEEE FENENE EEEE

cooms | EEEEEE EEEEEE EE
-m NNEEEE EEENEE EENEEN EEE

Perform bump-pointer allocation into new pages

Contribution-2: LLAMA

coms M 5] =l &=
<100 ms. freed to OS - i
<1sll [l EERE §F EEEEEE -L:

(Blocks of the original lifetime class are called
residual blocks, shown with dots)

Contribution-2: LLAMA

<omsll M freed to O N EEEN N EEEN
<100ms] [freed to OS EE i
<0 Hi_NN NEEN N ENENEN -L.:

As blocks disappear, gaps are filled
with shorter-lived blocks

Contribution-2: LLAMA

comsl M N EEEN B EEEN
<100 ms |
sp EEEEEE ENNEEN EENEEN EEN

As blocks disappear, gaps are filled
with shorter-lived blocks

Contribution-2: LLAMA

<ioms|lil [l N EEEN W EEEN

<100 ms .

<1s.

BN BN
~ NENE NENNEN NENNEN EEN

When all residual objects have disappeared, the page is
moved into the next-lower lifetime class or freed

Contribution-2: LLAMA

<10ms | -

N EEEN N BN

<rooms | [NN NN] BN

asgl Tt e e

When all residual objects have disappeared, the page is
moved into the next-lower lifetime class or freed

Contribution-2: LLAMA

coms i N EEEN B EEEN
<tooms 1 | | NN] W
s EEEENE EEEEEE EEE

When all residual objects have disappeared, the page is
moved into the next-lower lifetime class or freed

Contribution-2: LLAMA

<10ms | -

<100ms. -

<1s.

y
H INEN B DEEE

BN BN
ENENEE EENNEN EEN

When all residual objects have disappeared, the page is
moved into the next-lower lifetime class or freed

Contribution-2: LLAMA

<10ms | -

<100 ms .

<1s.

O 2 H EEEE W EEEE

ENENEE EENNEE EEN

When all residual objects have disappeared, the page is

moved

into the next-lower lifetime class or freed

Contribution-2: LLAMA

comsl N EEEN B EEEN
<100 ms s
s EEEEDE EEEEEE EEE

When all residual objects have disappeared, the page is
moved into the next-lower lifetime class or freed

Contribution-2: LLAMA

<toms N EEEN B EEEN
<100 ms | mEE) BN
s EEEENN EEEEEN EEN

If a page’s deadline expires, we mispredicted and
move it up one lifetime class

Contribution-2: LLAMA

B
comsm [N EEEN B EEEN
crooms i N] NN] W

s EEEENE EEEEEN EEE

If a page’s deadline expires, we mispredicted and
move it up one lifetime class

Performance optimization

* Avoid invoking the ML model by caching the results of prior requests
* Thread-local hashmap (key — return address, stack height, object size)
* 95% predictions are cache hits, 14% disagree with the cached value

| [1 [1
Allocation >

| 1 >
| 1 >

Hash Lifetime Class #1
,—.

Lifetime Class #2
Stack Trace Prediction Lifetime Class #3

Cache

Optional: Periodically discard cache

Model Model

Figure 7. High-level overview of low-latency prediction. We
use the model only when the hash of the current stack trace

is not in the cache. Discarding cache entries periodically
helEs dznamicallz adaEting to workload changes.

Results

Workload Prediction Accuracy Final Steady-state Memory | Fragmentation
Weighted Unweighted | TCMalloc LiLAmA Live reduction

Image Processing Server 96% 73% 664 MB 446 MB 153 MB 43%

TensorFlow InceptionV3 Benchmark 98% 94% 282 MB 269 MB 214 MB 19%

Data Processing Pipeline 99% 78% 1964 MB 481 MB 50 MB 78%

Redis Key-Value Store 100% 94% 832MB 312MB 115 MB 73%

Table 3. Summary of Model Accuracy and End-to-end Fragmentation Results

TCMalloc Fast path 8.3+ 0.1ns
TCMalloc Global allocator 81.7 £ 1.0 ns
Fast path (w/o prediction) 29.1 = 0.9 ns
Without lines/recycling block spans 17.1 £ 0.8 ns
With 2 threads 28.6 £ 0.1 ns
With 4 threads 28.7 £ 0.1 ns
Fast path (prediction cached) 48.8 + 0.1 ns
Fast path (run ML model, size=64) 144.6 + 1.5 us
Global allocator (w/o prediction) 52.7 + 29 ns
With 2 threads 274.5 + 38.0 ns
With 4 threads 802.2 + 75.0 ns
Global allocator (prediction cached) 88.0 + 7.8 ns
Global allocator (run ML model, size=64) 143.8 + 1.2 us

Table 4. Memory Allocator alloc+free Performance

* Up to 12.5% application slowdown (image server)

End-to-end Results

3500
Image processing server (43% steady-state fragmentation reduction)

3000 ' — Used Memory
TCMalloc (HP)
— 2500 | \ ‘ '\ & H Llama (HP)
s | r |
l

~ 2000
e | | | ' |

2 1500 l’ } ‘ L)
= 1000 ” te I‘ J % ﬁ /] f' uﬂ L
l (= iy H ML 11 - ! J | “l e »‘\ ‘“
500 ’ L Y- J“J L d - ﬂ J __J. MJU M !
300 ‘Ii:?r(\)e - 500 600 700 |

Steady-state fragmentation reduced by 19-78%

0

Oracle Results

2500
—— Actual live memory
2000 —— Oracle (Live 2 MiB Pages)
o —— Llama (Live 2 MiB pages)
2 1500
.y
O
£ 1000
Q
=
Sl N Y AW A RAYEY B AN AN AR RS AV AP AT AY YT A A
0= : v , bR v .
0 100 200 300 400 500 600

Time (s)

1.07x optimal memory footprint with perfect lifetimes

Take aways

* Predicting object lifetimes with good accuracy is feasible — thanks to ML!

* Lifetime based memory allocator reduces internal fragmentation in huge
pages

* Performance optimizations (e.g., caching) can hide the overhead of ML
models

* A great example of using ML to solve systems problems!

