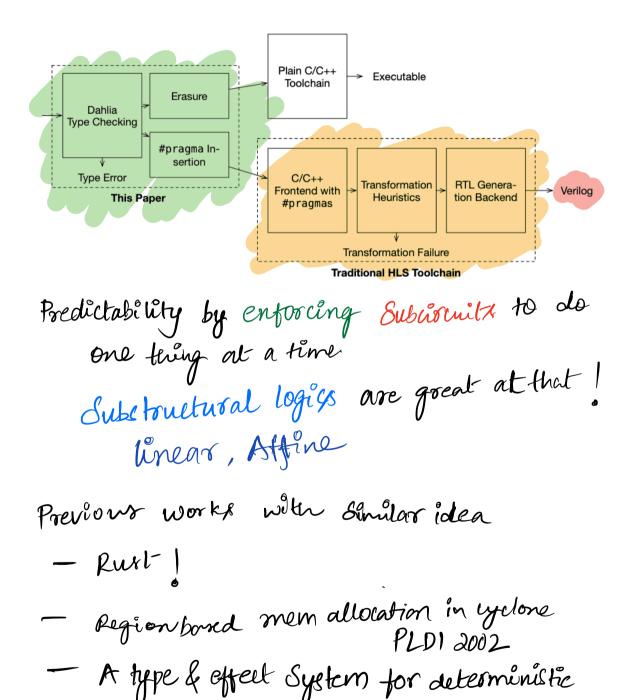
Problem with HLS tools: - Support only a subset of C - Heuristics based approvach to generating hardware Minor, Smooth changes result in large swings Unpredictable hardware generation

Solution: - Restrict to ItLS programe with clear tardware implementation - Explicit annotations for Costly" implementations.

## Overview:



porrallel Java: COPSIA

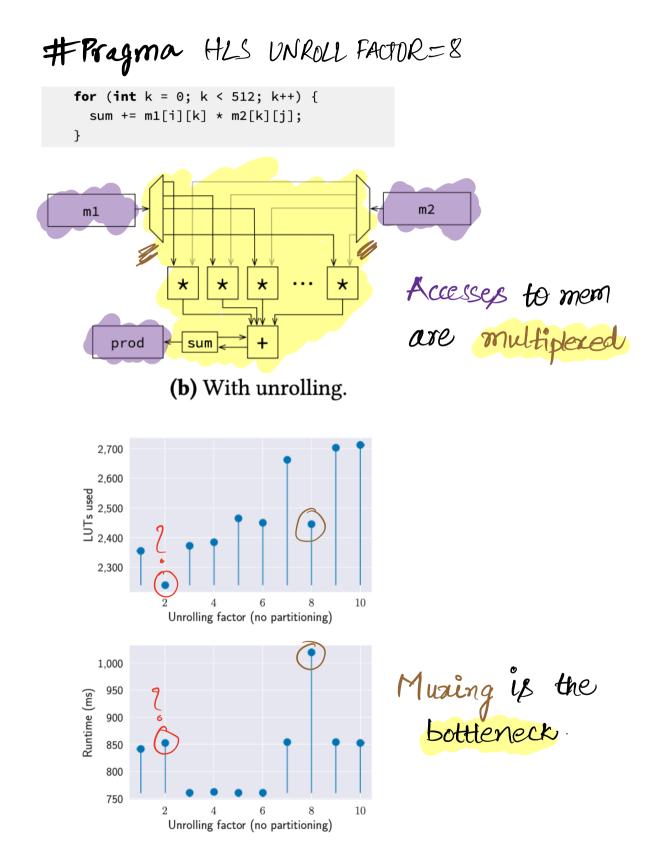
200

Unpredictability of HLS tooks:

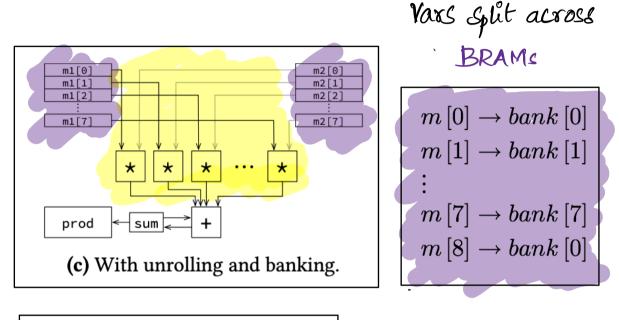
```
1 int m1[512][512], m2[512][512], prod[512][512];
2 int sum;
3 for (int i = 0; i < 512; i++) {
4 for (int j = 0; j < 512; j++) {
5 sum = 0;
6 for (int k = 0; k < 512; k++) {
7 sum += m1[i][k] * m2[k][j];
8 }
9 prod[i][j] = sum; } }</pre>
```

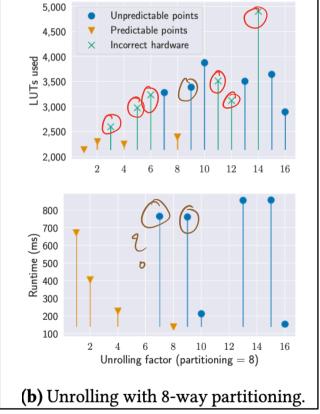
Figure 2. Dense matrix multiplication in HLS-friendly C.

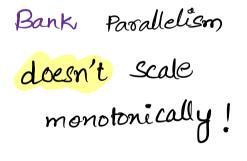




\* HLS ARRAY\_PARTITION VAR = M, FACTOR = 8 \* HLS ARRAY\_PARTITION VAR = M2 FACTOR = 8







Both unrolling and banking in lockstep



Ex: bank factor = 8 unroll factor = 9 Every <u>combinatorial circuit</u> needs to access every bank

$$|I_{---}| \text{ Ordered Composition: Sequential}$$

$$|\text{Let } \mathcal{X} = A[O] \quad \text{Read and write are} \quad \text{Sequential}$$

$$V = A[V] := I \quad \text{A} \quad \text{Sequential}$$

Restoration of resource access.

let 
$$x = a + b$$
; let  $y = C + d$ 

Local vary: wires frequeses  
let 
$$x = 0$$
;  $x := x + 1$ ; let  $y = x$ ;  
No affine byping have  
 $y$  if  $z$  is unused  
if  $z$  is needed  
across clock cycles  
let  $x = A[0] + 1 - B[0] := A[1] + x$   
 $z$  is a register in this case.  
Memory banking support  
let  $A$ : float [n bank m];  
 $// n / m = 0$ 

Explicit affine tracking for each bank

let A: float[10 bank 2];
A{0}[0] := 1;
A{1}[0] := 2; // OK: Accessing

float {2} [10] Alt Syntax

Loops, unvolling:

for (let i = 0..10) unroll 2 { f(i) }

Ξ

for (let i = 0..5) { f(2\*i + 0); f(2\*i + 1) }

for is parallelizeable, but no cross-iteration dependencies.

```
let A: float[10];
for (let i = 0..10) unroll 2 {
    A[i] := compute(i) // Error: Insufficient banks.
}
```

Interaction b/w composition & unrolling

let A: float[10 bank 2];
for (let i = 0..10) unroll 2 {
 let x = A[i]
 -- f(x, A[0]) }

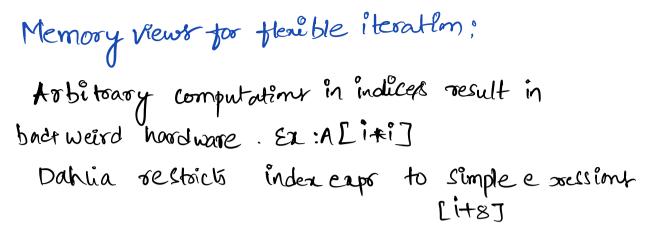
 Parallelization within each logical timestep

Combine constant:

for (let i = 0..10) unroll 2 { dot += A[i] \* B[i] }

+= introduces silent cross iteration dependency dot += AE2i] \* B[2i]; dot += A[di+1] \* B[2i+1].

```
for (let i = 0..10)
                                       B{0}
                                             A{1}
                                 A{0}
                                                    B{1}
unroll 2 {
  let v = A[i] * B[i];
                                 PE 0
                                              PE 1
                                         *
                                                     *
} combine {
  dot += v;
                                 combine
                                               +
                                                 dot
}
sequential code to be 29 is a combine register
performed after each > tuple of all values
Sequential code to be
unrolled iteration
                               +=,~=,/=,*=
```

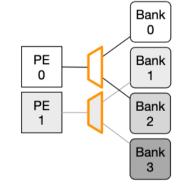


Hence: logé cal arrangements.



Smink:





#### Sutter:

**view**  $\vee$  = **suffix** M[**by**  $k \star e$ ];

VEbg[i] = MEbgEiteg K = bank factor of M.

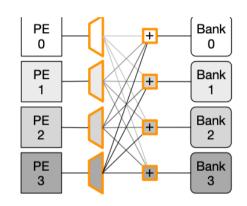
```
let A: float[8 bank 2];
for (let i = 0..4) {
    view s = suffix A[by 2*i];
    s[1]; // reads A[2*i + 1]
}
```

|      | PE<br>0 |   |   |   |   |   |   |   |   |
|------|---------|---|---|---|---|---|---|---|---|
| -    |         | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| PE   | PE<br>1 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 2E + | PE      | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 2    | 2       | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 2E   | PE<br>3 |   |   |   |   |   |   |   |   |

### Shift:

view v = shift M[by e];

```
let A: float[12 bank 4];
for (let i = 0..3) {
    view r = shift A[by i*i]; // r: float[12 bank 4]
    for (let j = 0..4) unroll 4
        let x = r[j]; // accesses A[i*i + j]
}
```



Bank 0

Bank

1

Bank

2

Bank 3

```
let A, B: float[12 bank 4];
view shA, shB = shrink A[by 2], B[by 2];
for (let i = 0..6) unroll 2 {
    view vA, vB = suffix shA[by 2*i], shB[by 2*i];
    for (let j = 0..2) unroll 2 {
        let v = vA[j] + vB[j];
    } combine {
        sum += v; }}
```

```
Dahlia Cannot
reason about
Seperation of
VA, VB'
```

```
float A[12], B[12], sum = 0.0;
for (int i = 0; i < 6; i++)
  for (int j = 0; j < 2; j++)
    sum += A[2*i + j] * B[2*i + j];</pre>
```

```
view VA = Split A [by 2];
```

### Formalism:

 $x \in \text{variables}$   $a \in \text{memories}$   $n \in \text{numbers}$ b ::= true | false  $v ::= n \mid b$  $e ::= v \mid \mathbf{bop} \ e_1 \ e_2 \mid x \mid a[e]$  $c ::= e \mid \text{let } x = e \mid c_1 - c_2 \mid c_1 \text{ ; } c_2 \mid \text{if } x c_1 c_2 \mid$ while  $x c \mid x := e \mid a[e_1] := e_2 \mid \text{skip}$  $\tau ::= \operatorname{bit}\langle n \rangle | \operatorname{float} | \operatorname{bool} | \operatorname{mem} \tau[n_1]$ 

for Compiles 10 While

Large Step Semantics:

| $a \notin \rho_1$ | $\sigma_1, \rho_1, e \Downarrow \sigma_2, \rho_2, n$         | $\sigma_2(a)(n) = v$   | men | access |
|-------------------|--------------------------------------------------------------|------------------------|-----|--------|
|                   | $\sigma_1, \rho_1, a[e] \Downarrow \sigma_2, \rho_2 \cup \{$ | [ <i>a</i> }, <i>v</i> |     |        |

 $\sigma_1, \rho_1, c_1 \Downarrow \sigma_2, \rho_2$  $\sigma_2, \rho_2, c_2 \Downarrow \sigma_3, \rho_3$  $\sigma_1, \rho_1, c_1; c_2 \Downarrow \sigma_3, \rho_3$ 

Parallel Composition

| $\sigma_1, \rho_1, c_1 \Downarrow$                                    | $\sigma_2, \rho_2$ | $\sigma_2, \rho_1, c_2 \Downarrow \sigma_3, \rho_3$ |  |  |  |
|-----------------------------------------------------------------------|--------------------|-----------------------------------------------------|--|--|--|
| $\sigma_1, \rho_1, c_1 - c_2 \Downarrow \sigma_3, \rho_2 \cup \rho_3$ |                    |                                                     |  |  |  |

 $\begin{array}{cccc} & , c_1 \Downarrow \sigma_2, \rho_2 & \sigma_2, \rho_1, c_2 \Downarrow \sigma_3, \rho_3 \\ \sigma_1, \rho_1, c_1 & \hline c_2 \Downarrow \sigma_3, \rho_2 \cup \rho_3 \end{array} \qquad \begin{array}{c} \text{Sequential} \\ \text{composition} \\ \text{mens accelsed in G are freed back (S)} \end{array}$ 

Type System:  

$$\Gamma: \text{ Variable context (for checking index, local type)}$$

$$\Delta: \text{ Affine context for removies.}$$

$$\frac{\Gamma, \Delta_1 + e_1 : \text{bit}\langle n \rangle + \Delta_2 \quad \Delta_2 = \Delta_3 \cup \{a \mapsto \text{mem } \tau[n_1]\}}{\Gamma, \Delta_1 + a[e] : \tau + \Delta_3} \qquad \text{mem} access$$

$$\text{ uby the } \Delta_2 \text{ update for index}.$$

$$\frac{\Gamma_1, \Delta_1 + e_1 + \Gamma_2, \Delta_2 \quad \Gamma_2, \Delta_2 + e_2 + \Gamma_3, \Delta_3}{\Gamma_1, \Delta_1 + e_1; e_2 + \Gamma_3, \Delta_3} \qquad \text{Posaliel lomposition}$$

$$\frac{\Gamma_1, \Delta_1 + e_1 + \Gamma_2, \Delta_2 \quad \Gamma_2, \Delta_1 + e_2 + \Gamma_3, \Delta_3}{\Gamma_1, \Delta_1 + e_1; e_2 + \Gamma_3, \Delta_3} \qquad \text{Seq composition}$$

**Lemma 1** (Progress). If  $\Gamma, \Delta \vdash c \dashv \Gamma_2, \Delta_2$  and  $\Gamma, \Delta \sim \sigma, \rho$ , then  $\sigma, \rho, c \rightarrow \sigma', \rho', c'$  or c =**skip**.

**Lemma 2** (Preservation). If  $\Gamma$ ,  $\Delta \vdash c \dashv \Gamma_2$ ,  $\Delta_2$  and  $\Gamma$ ,  $\Delta \sim \sigma$ ,  $\rho$ , and  $\sigma$ ,  $\rho$ ,  $c \rightarrow \sigma'$ ,  $\rho'$ , c', then  $\Gamma'$ ,  $\Delta' \vdash c' \dashv \Gamma'_2$ ,  $\Delta'_2$  and  $\Gamma'$ ,  $\Delta' \sim \sigma'$ ,  $\rho'$ .

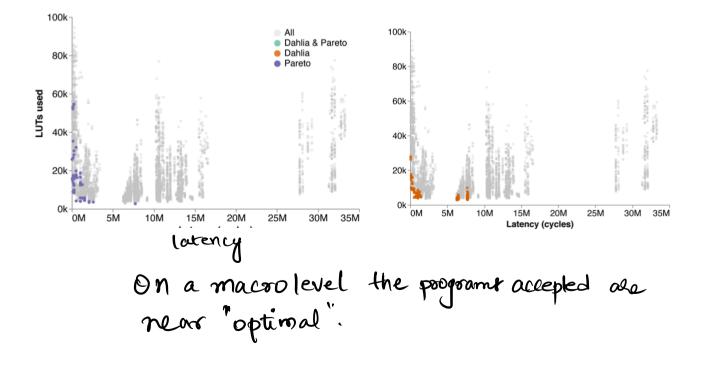
**Theorem.** If  $\emptyset$ ,  $\Delta^* \vdash c \dashv \Gamma_2$ ,  $\Delta_2$  and  $\emptyset$ ,  $\emptyset$ ,  $c \xrightarrow{*} \sigma$ ,  $\rho$ , c' and  $\sigma$ ,  $\rho$ ,  $c' \not\rightarrow$ , then c' = **skip**.

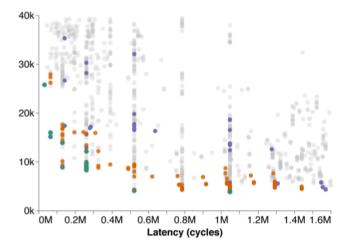
# Result: Experiments on mach HLS suite: 16/19 successful

C code

```
for (let row = 0..126) {
  for (let col = 0..62) {
    view window = shift orig[by row][by col];
    for (let k1 = 0..3) unroll 3 {
      for (let k2 = 0..3) unroll 3 {
         let mul = filter[k1][k2] * window[k1][k2];
    }
}
```

```
Dahlia code
```





However not the exact points that tooditional took & dahlia accept.

1. Deterministic design generation

2. Abstract view of time \* 3. SubStructural logics in Hfw, an interesting idea