
PAPER REVIEW:
LOG-STRUCTURED PROTOCOLS
IN DELOS

Guided by: Prof. Abhilash Jindal

Presented by: Ramita Sardana

AGENDA

• Background and Motivation

• Contributions

• Log-structured protocols design

• Implementation of Nine Log-structured protocols

• Two production databases using the abstraction

• Benefits

• Evaluation

BACKGROUND AND MOTIVATION

BACKGROUND

BACKGROUND

BACKGROUND

BACKGROUND: CONTROL PLANE STORAGE
REQUIREMENTS

BACKGROUND: CONTROL PLANE STORAGE
REQUIREMENTS

… but most databases look similar!

DELOS PLATFORM: HOURGLASS
ARCHITECTURE

DELOS PLATFORM: HOURGLASS
ARCHITECTURE

USING DELOS

USING DELOS

USING DELOS

The platform became a bottleneck not in terms of scaling or throughput but in terms of

developer productivity.

“

”

USE A GOOD IDEA
AGAIN.

Butler Lampson, Hints for Computer System Design.

Butler W. Lampson. 1983. Hints for computer system design. SIGOPS Oper. Syst. Rev.

17, 5 (October 1983), 33–48. https://doi.org/10.1145/773379.806614

LOG STRUCTURED PROTOCOLS: LAYERING THE
STATE MACHINE

LOG STRUCTURED PROTOCOLS: LAYERING THE
STATE MACHINE

Breaking the platform state machine into lots of fine-grained state machines, and layering these in a

protocol state, much like network packet layering.

LOG-STRUCTURED PROTOCOLS DESIGN

LOG
STRUCTURED

PROTOCOL
A fine-grained replicated state

machine executing above a

shared log that can be layered

into reusable protocol stacks

under different databases.

Components

• Application
Logic

• Engine

• Local Store

• Shared Log

LOG-STRUCTURED PROTOCOLS: CRITICAL PATH

LOG-STRUCTURED PROTOCOLS: CRITICAL PATH

LOG-STRUCTURED PROTOCOLS: CRITICAL PATH

LOG-STRUCTURED PROTOCOLS: CRITICAL PATH

LOG-STRUCTURED PROTOCOLS: CRITICAL PATH

Engine stack relays the app

response back to the waiting

propose call, completing the

service invocation.

THE LIFECYCLE OF A PROPOSAL

• Application split it into two

parts: a Wrapper (exposing

foo) and an Applicator

• Wrapper serializes an

incoming request (without

executing it) and calls

propose on the top-most

engine.

• Applicator receives this

request from the top engine

via the apply upcall,

executes foo, and returns

the response to the top

engine.

LOG-STRUCTURED PROTOCOL ENGINE APIS

A TALE OF TWO DATABASES AND NINE
ENGINES

TWO DATABASES

DelosTable

• Rich API

• Support for transactions, secondary

indexes, and range queries

• Strong guarantees on consistency,

durability, and availability

Zelos

• Zookeeper-like interface

• Supports CRUD operations on a

hierarchical structure of nodes

NINE LOG-STRUCTURED PROTOCOL ENGINES

BASE ENGINE (1/2)

• BaseEngine resides at the bottom of the stack and implements the

IEngine API over a shared log.

• Primary role: To play the log forward and apply each entry to the

application above it.

• On a Propose,

• Append the entry to the shared log

• Play the log forward until the newly appended entry

• Pass each entry up to the apply upcall of the application

• Relay the application response to the waiting propose call

BASE ENGINE (2/2)

• A form of replicated RPC

• Durable: Returns only once the entry is stored durably on the shared

log

• Failure-atomic: Executed on each server within a LocalStore

transaction;

• Linearizable: Ordered via the shared log before executing on the local

server

• Also responsible for the mechanism of GC: Periodically trims the

shared log

VIEW TRACKING ENGINE

• ViewTrackingEngine coordinates the trimming of the log.

• It tracks the playback position of each server

• When all servers have played the log past some point X, the

log can be trimmed until X.

OBSERVER ENGINE

• The ObserverEngine is placed between different layers of

Delos stacks.

• A lightweight layer that measures and externally logs end-

to-end latencies on each propose/sync call

• Provides reusable monitoring functionality by tracking the

time spent in a given engine

BRAIN DOCTOR ENGINE

• BrainDoctorEngine acts as a simple pass-through engine,

with one addition: an external call that accepts a list of raw

LocalStore writes and proposes it into the log.

• Used in emergencies to perform “brain surgery” on the key-

value store (to fix a bug in the state of database)

• Directly changing the state of a running Delos database

without going through application logic

LOG BACKUP ENGINE

• Customer request for Point-in-Time restore

• Need to copy the shared log to a backup store before

trimming it

• Reconstruct any intermediate state of the database by

starting from a prior snapshot backup and playing the log

backup forward

SESSION ORDER ENGINE

• The SessionOrderEngine implements the idea of Zookeeper sessions

• ZooKeeper provides a session-ordering guarantee: within a session, if a client first

issues a write and then a concurrent read (without waiting for the write to complete),

the read must reflect the write.

• This property is stronger than linearizability, which allows concurrent writes and

reads to be ordered arbitrarily; and encompasses exactly-once semantics

• Delos implements these semantics in the SessionOrderEngine by assigning

sequence numbers (essentially autoincrementing IDs) to outgoing writes.

• When other nodes read from the log, they check that the writes are ordered

based on the sequence number, reordering them into the correct sequence

as necessary.

TIME ENGINE

• TimeEngine implemented to support time-based trimming

in a way that is robust to clock skew and drift

• Allows the creation of a timer object which fires once a fixed

amount of time has elapsed on a constant number of servers

within the cluster

BATCHING ENGINE

• The BatchingEngine groups entries into a single transaction

write to the LocalStore.

• Group commit optimization approach enables higher

performance and provides a common implementation that

both DelosTable and Zelos use (related to Delos’ design goal

of code re-use).

LEASE ENGINE

• The BaseEngine has a leaderless design above the shared log

• Any server can propose a command, while each server can sync with the shared

log to ensure strong consistency.

• Advantage: The loss of a single server does not disrupt availability.

• Disadvantage: The sync before a strongly consistent read incurs a round-trip to

the shared log.

• Designs with a strong leader can provide 0-RTT strongly consistent reads at the

leader.

• LeaseEngine elects a server as a designated proposer above the shared log.

• Reads at this server can be satisfied with strong consistency without accessing the

shared log.

PRODUCTION DELOS STACKS

BENEFITS

BENEFIT#0: RAPID DEPLOYMENT

BENEFIT#1: INCREMENTAL UPGRADES

BENEFIT#2: CODE REUSE

BENEFIT #3: CUSTOMIZING BEHAVIOR

BENEFIT #4: IMPROVING PERFORMANCE

BENEFIT #5: DIFFERENT ROLES

EVALUATION

EVALUATION

The Overhead of Layering

Log-structured protocols

are lightweight.

EVALUATION

The Overhead of Layering

The apply thread is not

the bottleneck.

The p99 latency is the highest latency value (slowest response) of the fastest 99 percent of

requests i.e. worst latency observed by 99% of all requests if you ignore the top 1%.

EVALUATION

Benefits of Layering

Log-structured protocols

can optimize performance

significantly.

EVALUATION

Benefits of Layering

Log-structured protocols

enhance observability.

CONCLUSION

• Delos is a control plane database at the bottom of the Facebook Stack

• Log-Structured Protocols enabled multiple databases on a single platform:

• DelosTable

• Zelos

• DelosQ

• …

REFERENCES

• Mahesh Balakrishnan, Chen Shen, Ahmed Jafri, Suyog Mapara, David

Geraghty, Jason Flinn, Vidhya Venkat, Ivailo Nedelchev, Santosh Ghosh,

Mihir Dharamshi, Jingming Liu, Filip Gruszczynski, Jun Li, Rounak

Tibrewal, Ali Zaveri, Rajeev Nagar, Ahmed Yossef, Francois Richard, and

Yee Jiun Song. 2021. Log-structured Protocols in Delos. In Proceedings

of the ACM SIGOPS 28th Symposium on Operating Systems Principles

(SOSP '21). Association for Computing Machinery, New York, NY, USA,

538–552. https://doi.org/10.1145/3477132.3483544

• https://www.facebook.com/atscaleevents/videos/194783778140362/

https://doi.org/10.1145/3477132.3483544
https://www.facebook.com/atscaleevents/videos/194783778140362/

REFERENCES

• https://engineering.fb.com/2019/06/06/data-center-

engineering/delos/#:~:text=Delos%20is%20designed%20around%20the,new%20u

pdate%20to%20the%20VirtualLog.

• https://www.youtube.com/watch?v=4EGArLVavbg

• https://www.youtube.com/watch?v=H-7OCFnTeMY

• http://muratbuffalo.blogspot.com/2021/10/log-structured-protocols-in-delos-

sosp21.html

https://www.facebook.com/atscaleevents/videos/389699398783537/?t=1790

• https://atscaleconference.com/2021/03/15/virtualizing-consensus/

• https://www.micahlerner.com/2021/11/23/log-structured-protocols-in-delos.html

https://engineering.fb.com/2019/06/06/data-center-engineering/delos/#:~:text=Delos%20is%20designed%20around%20the,new%20update%20to%20the%20VirtualLog
https://www.youtube.com/watch?v=H-7OCFnTeMY
https://www.youtube.com/watch?v=H-7OCFnTeMY
http://muratbuffalo.blogspot.com/2021/10/log-structured-protocols-in-delos-sosp21.html
https://www.facebook.com/atscaleevents/videos/389699398783537/?t=1790
https://atscaleconference.com/2021/03/15/virtualizing-consensus/
https://www.micahlerner.com/2021/11/23/log-structured-protocols-in-delos.html

THANK YOU

