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Problem Statement
▪ An end-to-end static binary translator with precise translation rules between x86
and Arm concurrency semantics



Background: Shared Memory Concurrency
▪ Threads communicate through shared memory accesses

▪ Memory operations:

▪ load (ld) that reads from memory

▪ store (st) that writes to memory

▪ atomic read-modify-write (RMW) that reads and based on the value read, writes to the memory 
atomically

▪ fence operations that forces ordering over memory accesses



Background: Interleaving
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Background: Weak Behaviors
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Background: Relaxed Memory Models

▪ Reorderings allowed may differ under different relaxed memory models

▪ Different relaxed memory models may have different allowed weak behaviors

a=1, b=0 not allowed in x86, but allowed in Arm



SBT (Static Binary Translators)
▪ Three phase process:

1. Binary Lifting: translate input program to some IR

2. Optimize the IR

3. Compile the optimized IR to target architecture

▪ Limitations of existing SBT:
▪ Very limited support of several advanced architectural features

▪ Unable to translate concurrent binaries



Limitations of existing SBT
▪ Very limited support of several advanced architectural features

▪ unable to translate concurrent binaries



Proposed Solution
▪ Memory Model at IR level (LIMM) that
▪ Allows precise mapping from source to IR to target

▪ Allows common optimizations on IR

▪ Translation tool requirements:
▪ Reason about the consistency models for correct and efficient translation

▪ Support for source instruction set



Overview



Binary Lifting
▪ Lift binary to LLVM IR

▪ Contributions:
▪ add support for floating-point arguments/return types and tail-calls

▪ add support for around 100 instructions ( 400 instruction variants), mainly SSE instructions

▪ add support for some of the processor status flag

▪ implement additional x86 features such as global variables declared in header files

▪ fix several bugs discovered when lifting highly optimized programs, e.g., using –O3



Binary Lifting: Methodology
▪ Function Type Discovery
▪ Find function’s parameters, return types

▪ Based on the calling convention

▪ Instruction Translation
▪ Each machine instruction can be translated to zero, one, or more LLVM instructions

▪ Any unnecessary lifted instructions become dead code and are eliminated by traditional LLVM 
optimizations

▪ Translating Function Calls
▪ Use information from function type discovery

▪ Find function arguments and return value based on calling convention 

▪ Variadic Functions:  all parameter registers alive at the callsite are passed an arguments



Binary Lifting: Methodology
▪ SSE Register Values
▪ Based on bit width of source and destination types

▪ Stack Memory
▪ Using byte array with translated indexing for stack offsets



IR Refinements (PPOpt)
▪ Challenges:
▪ Machine code does not differentiate between integer and pointer types

▪ Machine code instructions do not dictate the type of a pointer

▪ Solution:
▪ Use inttoptr and ptrtoint to figure out the type

▪ Peephole optimizations to optimize interger-based address computation

▪ Integer parameters used only as input to inttoptr are converted to pointers



Peephole Optimizations



Promoting Pointer Parameters
▪ Collect all uses of each integer parameter

▪ If all its users are inttoptr instructions, mark it for a pointer type promotion

▪ Pointer type will depend on all the destination pointer types of the inttoptr instructions

▪ If all of them have the same destination pointer type, promote it to that type and remove all 
inttoptr instructions

▪ Else promote it to an i8 pointer, replace all the inttoptr instructions to a bitcast



Basic Notations
▪ Notations
▪ Events:  represented by ⟨id,tid,lab⟩,

◦ Where lab = ⟨op,loc,val⟩

▪ Relations:
◦ 𝑆?, 𝑆+, 𝑆∗, 𝑆−1, 𝑆imm, [𝐴], 𝑆1;𝑆2

◦ po

◦ rf

◦ co

◦ rmw

◦ fr

▪ Executions



Common Axioms in x86 and Arm

▪ Coherence:

▪ Atomicity:  



x86 Axioms



Arm Axioms



IR Concurrency Model (LIMM)
▪ Already exist: Rna, Wna, RMWsc, Rsc, Wsc, Fsc

▪ Introduce fence Frm and Fww into LLVM IR

▪ Frm: order load with memory accesses after it

▪ Fww: order store pairs



Translation



Correctness Guarantees

Theorem: The mapping scheme from x86 to IR and IR to Arm are 
precise



Optimizing Transformations (Popt)
▪ Reorderings

▪ Memory Access Eliminations

▪ Speculative Load Introduction

▪ Fence Merging: Frm ·Fww → Fsc ·Fsc → Fsc

Give proof of correctness of these tranformations



Reorderings



Memory Access Eliminations



Implementing LIMM
▪ From x86 to IR:
▪ For every ld and st, explore the use-def chain of their pointer operand.

▪ If the access is performed on a stack address, then no fence is inserted.

▪ Else fences are inserted

▪ merge pairs of fences

▪ Perform LLVM optimizations

▪ Convert the IR to Arm



Performance over Various Optimizations

▪ Native: Complied from C source code to Arm binary

▪ Lifted: x86 binary to Arm (no optimizations)

▪ Opt: Lifted with optimizations of lifted LLVM IR

▪ Popt: Opt with fence merging rules

▪ PPOpt: POpt with IR refinement



Impact of Peephole Optimizations

▪ Result of removing inttoptr and 
ptrtoint through peephole optimizations
proposed.



Impact of fence placement optimizations

▪ Reduction in #fences w.r.t unoptimized lifted 
code (Lifted)

▪ IR refinements (PPOpt) allow the fence placement 
algorithm to avoid adding fences to operations 
involving the stack memory

▪ Performance improvement by reducing
#fences w.r.t unoptimized lifter code 
(Lifted)



Comparison of Code Size

▪ Increase in code side w.r.t Native code



Summary
▪ Lift binary to IR

▪ IR must include some primitives to express memory ordering semantics of the source 
architecture

▪ Perform Optimizations

▪ Convert IR to target architecture



Insights
▪ This approach works so well for x86 and Arm because they are quite similar

▪ To translate binary from x86 to some architecture like Power, we need many more types of 
fences, loads and stores in IR and their translation to Power

▪ Such precise translation may be hard to come up with

▪ The optimizations proposed, specially peephole optimization seem to be generic enough

▪ Reordering optimization need to be redefined for different architecture as per the added 
memory model primitives in IR

▪ Memory Access Eliminations, fence merging rules and proof of speculative load introduction is
not generic enough


