Lasagne: A Static Binary
Translator for Weak Memory
Model Architectures

PLDI 2022
Rodrigo C. O. Raocha, Dennis Sprokhol, Martin Fink, Redha Gouicem, Tom Spink,
Soham Chakraborty and Pramod Bhatotia

PRESENTED BY: Divyanjali

Problem Statement

= An end-to-end static binary translator with precise translation rules between x86
and Arm concurrency semantics

Background: Shared Memory Concurrency

= Threads communicate through shared memory accesses

= Memory operations:
= load (Id) that reads from memory

= store (st) that writes to memory

= atomic read-modify-write (RMw) that reads and based on the value read, writes to the memory
atomically

= fence operations that forces ordering over memory accesses

Background

tl t2
x=1 y=1
a=y b=x
tl t2
x=1
y=1
b=x
a=y

x=1, y=1, a=1, b=1

. Interleaving

tl t2
x=1
a=y

y=1

b=x

tl t2

b =X

y=Db
x=1
a=y

x=1, y=1, a=0, b=1

x=1, y=1, a=1, b=0

Background: Weak Behaviors

Allow instruction of a thread to reorder

tl t2 tl t2
Xx=1 y=1 a=y y=1
(a:y b =x x=1 b =x t1 i
b =X
a=y
y=Db
x=1

Background: Relaxed Memory Models

= Reorderings allowed may differ under different relaxed memory models

= Different relaxed memory models may have different allowed weak behaviors

Y =0;

I <
I
=

—_t

X=1;|la=Y; (MP)
Y=1;||b=X;

a=1, b=0 not allowed in x86, but allowed in Arm

SBT (Static Binary Translators)

= Three phase process:
1. Binary Lifting: translate input program to some IR
2. Optimize the IR
3. Compile the optimized IR to target architecture

= Limitations of existing SBT:
= Very limited support of several advanced architectural features
= Unable to translate concurrent binaries

Limitations of existing SBT

= Very limited support of several advanced architectural features

= unable to translate concurrent binaries

X=1;lla=Y; Xaa=1;lla=Yya;
Y=1;||b=X; _)mctoll Yaa=1; || D=Xxa;
(a) x86 (b) Unoptimized LLVM IR
Yaa=1; || a=Yya; Y=1;||a=Y;
B | S X=1:||b=X;
(c) Optimized LLVM IR (d) Arm

Proposed Solution

= Memory Model at IR level (LIMM) that
= Allows precise mapping from source to IR to target
= Allows common optimizations on IR

= Translation tool requirements:
= Reason about the consistency models for correct and efficient translation

= Support for source instruction set

Overview

(§6) LIMM: LLVM IR (§7) Verified Mappings [Heavily modified
Memory Model and Trans formatlons 1 Novel contribution
s
(84) Binary [[R| (85) IR (88) Optlmlzed IR (s8) LLVM |IR | (s8) LLVM
XB86—> Lifting — Refinement _> Fence Placement — Optimizations —> Backend »>ARM

Binary Lifting

= Lift binary to LLVM IR

= Contributions:
= add support for floating-point arguments/return types and tail-calls

add support for around 100 instructions (400 instruction variants), mainly SSE instructions

add support for some of the processor status flag

implement additional x86 features such as global variables declared in header files

fix several bugs discovered when lifting highly optimized programs, e.g., using —03

Binary Lifting: Methodology

= Function Type Discovery
= Find function’s parameters, return types
= Based on the calling convention

= Instruction Translation
= Each machine instruction can be translated to zero, one, or more LLVM instructions

= Any unnecessary lifted instructions become dead code and are eliminated by traditional LLVIM
optimizations

= Translating Function Calls
= Use information from function type discovery

= Find function arguments and return value based on calling convention
= Variadic Functions: all parameter registers alive at the callsite are passed an arguments

Binary Lifting: Methodology

= SSE Register Values
= Based on bit width of source and destination types

= Stack Memory
= Using byte array with translated indexing for stack offsets

IR Refinements (PPOpt)

= Challenges:
= Machine code does not differentiate between integer and pointer types
= Machine code instructions do not dictate the type of a pointer

= Solution:
= Use inttoptrand ptrtoint to figure out the type
= Peephole optimizations to optimize interger-based address computation

" Integer parameters used only as input to inttoptr are converted to pointers

Peephole Optimizations

Rule 1: Pointer casting

%0 = ptrtoint i18* %stacktop to i64
%RBP = inttoptr i64 %0 to i32%*
=>

%RBP = bitcast i8* %stacktop to i132%

Rule 2: Stack offset

%tos = ptrtoint i8* %stacktop to i64
%0 = add 164 %tos, 16

%RBP = inttoptr i64 %0 to i32%
=>

%0

= getelementptr 18, 18* %stacktop, 164 16
%RBP =

bitcast i8* %0 to 1i32%*
Rule 3: Parameter offset

%0 = add 164 %arg, 8
%RBP = inttoptr 164 %0 to 1i32%
=>
O = inttoptr 164 %arg to i8%*
1 = getelementptr i8, 18* %0, 164 8
RBP = bitcast i8* %1 to i32*

o® of o°

Promoting Pointer Parameters

= Collect all uses of each integer parameter
= If all its users are inttoptr instructions, mark it for a pointer type promotion
= Pointer type will depend on all the destination pointer types of the inttoptr instructions

= |f all of them have the same destination pointer type, promote it to that type and remove all
inttoptr instructions

= Else promote it to an i8 pointer, replace all the inttoptr instructions to a bitcast

Basic Notations

= Notations

= Events: represented by (id,tid,lab),
> Where lab = (op,loc,val)

= Relations:
o 87,8, 5%, 81, S [A], 51,52
© po
o rf
° CO
° rmw
o fr

= Executions

Common Axioms in x86 and Arm

= Coherence: (poliocUrfUcoUfr)* is irreflexive. (sc-per-loc)

= Atomicity: rmwN (fre;coe)=0 (atomicity)

X886 Axioms

x86 axiom
(GHB) hb* is irreflexive where

ppo= (WXW)U(RXW)U(RXR))Npo
implid = po;| AtUF|U[AtUF];po
where At = dom(rmw)Ucodom(rmw)

hb= ppoUimplidUrfeUfrUco

Arm Axioms

Arm axiom
(external) ob is irreflexive where

ob £ (obsUaobUdobUbob)* where
obs = rfeUcoeUfre

aob= rmwU...

dob = addr U data U ctrl;|[W] U...
bob = po;[F];po U [R];po;[Fip]ipo U [W];pos[Fsr];pos[W] U--

IR Concurrency Model (LIMM)

= Already exist: Rna, Wna, RMWsc, Rsc, Wsc, Fsc

= Introduce fence Frm and Fww into LLVM IR
= Frm: order load with memory accesses after it
= Fww: order store pairs

(poljoc Y rf U fr U co) is acyclic. (sc-per-loc)
rmw N (fre;coe) =0. (atomicity)
ghb is irreflexive where (GOrd)
ghb2(ord U rfe U coe U fre)™ where
ord =[R];po;[Frm];po;[RUW] (ordy)
U [W];po;[Fww];po;[W] (ords)
U :FSCURSC UCOdom(rmW)];pO (Ord3)
U po;[FscUWscUdom(rmw)] (ordy)

Translation

x86 IR Arm

|d — |ldya;Frm — [|d;DMBLD

st — Fww;stya — DMBST;st

RMW — RMWgc — DMBFF;RMW;DMBFF
MFENCE — Fsc — DMBFF

(c) x86 to IR to Arm

Correctness Guarantees

Theorem 7.1 (Mapping Correctness). Let Ms — M, be a
mapping scheme which generates target program PPy from the
source program Ps. The scheme is correct if for each consistent
target execution X € [|P¢]|m, there exists a consistent source
execution Xs € [[Ps] | m, such that Behav(X;)=Behav(Xs).

Theorem: The mapping scheme from x86 to IR and IR to Arm are
precise

Optimizing Transformations (Popt)

= Reorderings
= Memory Access Eliminations
= Speculative Load Introduction

= Fence Merging: Frm -Fww — Fsc -Fsc — Fsc

Give proof of correctness of these tranformations

Reorderings

la\b— | Rya | Wna | Rsc | Rsc*Wsc | Fru | Fww | Fsc
Rya v e v X X v X
Wxa v e v X v X X
Rsc X X X X v |/
Rsc-Wse | X X X X v v v
Frm X X X v = v v
Foww v X v v e = e
FSC X X X / \/ |/ -

(a) Reorderings a-b~» b-a.

Memory Access Eliminations

R(X,0)-R(X,0")~ R(X,0) (RAR)
W(X,0)-R(X,0) ~»W(X,0) (RAW)
W(X,0)-W(X,0")~»W(X,v) (WAW)
R(X,0)-Fo-R(X,0")~ R(X,v)-F, (F-RAR)
W(X,v)-F;-R(X,0)~»W(X,0)-F; (F-RAW)
W(X,0) -Fo-W(X,0")~ Fy-W(X,0") (F-WAW)

(b) Eliminations where o € {rm,ww} and 7 € {sc, ww }.

Implementing LIMM

®= From x86 to IR:
For every |d and st, explore the use-def chain of their pointer operand.

If the access is performed on a stack address, then no fence is inserted.

Else fences are inserted
" merge pairs of fences

= Perform LLVM optimizations

= Convert the IR to Arm

Performance over Various Optimizations

o Bl Native

g° BN Lifted

*g’ s B Opt

a# 1 POpt

E EEE PPOpt

N

T2

=

S1

Z.

0
GMean

= Native: Complied from C source code to Arm binary = Popt: Opt with fence merging rules
= Lifted: x86 binary to Arm (no optimizations) = PPOpt: POpt with IR refinement

= Opt: Lifted with optimizations of lifted LLVM IR

Impact of Peephole Optimizations

== PPOpt

= Result of removing inttoptr and
ptrtoint through peephole optimizations
proposed.

SM GMean

N W e O O
o ©Oo O o O

[EY
(e}

Reduction of Pointer Cast (%)
o

Impact of fence p\acement optimizations

o

2 = Popt T 16 1 POpt
@)

§60 — PPOpt % g14 BN PPOpt

S 50 = £12 ;

o i

M40 =10 E ™
B S s —Q

o 30 = i T
9 o 6

2 oq - | .|. ‘
< 10 (] -E’

Q = 2

= 0 ~ 0 E.

GMean HT SM GMean

= Reduction in #fences w.r.t unoptimized lifted = Performance improvement by reducing
code (Lifted) #fences w.r.t unoptimized lifter code

Lifted
= IR refinements (PPOpt) allow the fence placement (Lijtea)

algorithm to avoid adding fences to operations
involving the stack memory

Comparison of Code Size

Bl lifted @ Opt [POpt [PPOpt

=
B~
N
!

=
o
o

Code Increase (%)
- S 8 &

GMean

" |ncrease in code side w.r.t Native code

Summary

= Lift binary to IR

* |R must include some primitives to express memory ordering semantics of the source
architecture

= Perform Optimizations

= Convert IR to target architecture

Insights

= This approach works so well for x86 and Arm because they are quite similar

= To translate binary from x86 to some architecture like Power, we need many more types of
fences, loads and stores in IR and their translation to Power

= Such precise translation may be hard to come up with

= The optimizations proposed, specially peephole optimization seem to be generic enough

= Reordering optimization need to be redefined for different architecture as per the added
memory model primitives in IR

= Memory Access Eliminations, fence merging rules and proof of speculative load introduction is
not generic enough

