
Snowboard: Finding Kernel
Concurrency Bugs through Systematic
Inter-thread Communication Analysis
SOSP 2021. Gong, Fonseca, Altinbucken, Maniatis

Kernel Concurrency Analysis
• Detecting kernel concurrency bugs

• Kernels are huge (~30 million LoC) with complex interfaces (> 400 sys calls)

• Bugs are triggered on specific inputs and specific interleavings

• Automation is a need; Cannot be exhaustive in search

2

Past work
• Fuzzers: mostly for sequential executions.

• Razzer: data-race detection statically and generates concurrent tests (high false
positive rate)

• Krace: No support for scheduling hint — explores a very large space.

• Static/Dynamic data race detectors — miss other concurrency-related errors
(order and atomicity violations)

• Sample mem access and randomly delay them using H/w watchpoints

• Use of PCT

3

Solution offered?
Snowboard

• Generates sequential tests (uses an existing fuzzer); identifies PMC

• Prioritises and fuse sequential test to construct concurrent tests

• Based on a reader and writer accessing the same mem location

• Assumption: potential inter-thread interactions can be predicted based on
analysing memory accesses (sequentially and in offline mode)

• Uses a test selection metric that is more general than structural-coverage
metrics

• Control-flow edges, def-use, instr-pair etc.

4

Overview of results
• 14 concurrency bugs in Linux kernels 5.3.10 and 5.12-rc3

• Four are non-DR type causing kernel panics and file system errors

• 12 bugs were confirmed by the developer and 6 were fixed

• 2 have existed in the stable version of the kernel for many years.

• Of all types — order violations, data races, and atomicity violations.

5

PMC — Potential Memory Communication
• Conditions for a PMC to occur:

• Thread A makes a write access

• Thread B makes a read access

• The mem regions of the two accesses must overlap

• The write access updates the mem area with a different value

• Note that the above conditions do not require synchronisation — which
means more general than data races!

6

An example

• Left kernel thread - writer

• Right kernel thread - reader

• pppol2tp_connect() -
fetches the previously
registered tunnel

• l2tp_tunnel_register() —
registers a new tunnel

• Bug — reader accesses the
tunnel before the writer has
initialised the sock field

7

Snowboard Design Overview

8

Sequential Test Generation (ST_A)
• External fuzzer, static analysis tools

• Snowboard uses the coverage metrics exported by the generator to select
tests with high coverage and low overlap.

• Snowboard dynamically profiles (sequential execution) selected tests by
recording

• Type of mem access and instruction addresses, address range, vals read/written

• Runs from the same fixed initial kernel state

• Standard assumption: only non-stack accesses are potentially shared (uses ESP
register to prune stack accesses)

9

PMC Identification
• Gathers all shared accesses across all sequential tests

• Indexes them by the mem range they access

• Detect overlapping mem ranges for reads and writes

• If for each pair <W, R> the value written is different from the value read, then
designated as a PMC.

• Implemented as a nested scan over the index structure

10

PMC Identification
• 169 billion PMCs in Linux kernel 5.12-rc3 —

too large!

• Insights — many PMCs are equivalent under
some criteria.

• Form clusterings of PMCs on such criteria

• Not sound but complete

• It may club two PMCs even when they expose
distance misbehaviours

11

Concurrent Test Execution
• PMC can map to multiple test pairs

• Randomly choose one to construct CT

• CT = <t1, t2, sched-hint>

• Scheduling component

• Trigger the PMC and not trigger the PMC

• Avoid deadlocks/livelocks

12

Concurrent Test Execution
• Algorithm

• Check if thread is live

• If not then yield control to other thread

• For each access in the currently executing instruction

• Switch to nondet scheduling if pmc access is arriving (for future trials)

• If pmc access performed then note the previous access to the PMC one

• Now switch to nondet scheduling

• If the current execution ends in a bug — record it.

• Check if other PMCs were observed in the trial - if yes then record them for future trials

13

Real harmful bugs detected

• Reader and writer have
different locks

• A bad MAC address can be
read by the reader

• Was unreported for 10 years.

14

Discussion
• Low precision (36 %) yet was able to find subtle errors.

• What about bugs involving more than 2 threads or more than one variable?

• Why did they leave out deadlocking executions from consideration?

• Weak memory orderings?

• Breaking of assumptions for PMC computation: If instructions touch large memory
segments (DBMS updating in-memory indexes).

• Guided test generation

• Any other?

15

