Snowboard: Finding Kernel
Concurrency Bugs through Systematic

Inter-thread Communication Analysis
SOSP 2021. Gong, Fonseca, Altinbucken, Maniatis

Kernel Concurrency Analysis

» Detecting kernel concurrency bugs
o Kernels are huge (~30 million LoC) with complex interfaces (> 400 sys calls)
 Bugs are triggered on specific inputs and specific interleavings

 Automation is a need; Cannot be exhaustive in search

Past work

 Fuzzers: mostly for sequential executions.

 Razzer: data-race detection statically and generates concurrent tests (high false
positive rate)

e Krace: No support for scheduling hint — explores a very large space.

o Static/Dynamic data race detectors — miss other concurrency-related errors
(order and atomicity violations)

 Sample mem access and randomly delay them using H/w watchpoints

e Use of PCT

Solution offered?

Snowboard

* (Generates sequential tests (uses an existing fuzzer); identifies PMC
* Prioritises and fuse sequential test to construct concurrent tests
 Based on a reader and writer accessing the same mem location

 Assumption: potential inter-thread interactions can be predicted based on
analysing memory accesses (sequentially and in offline mode)

 Uses a test selection metric that is more general than structural-coverage
metrics

* Control-flow edges, def-use, instr-pair etc.

Overview of results

* 14 concurrency bugs In Linux kernels 5.3.10 and 5.12-rc3
 Four are non-DR type causing kernel panics and file system errors
12 bugs were confirmed by the developer and 6 were fixed
e 2 have existed in the stable version of the kernel for many years.

o Of all types — order violations, data races, and atomicity violations.

PMC — Potential Memory Communication

* Conditions for a PMC to occur:
 Thread A makes a write access
 [hread B makes a read access
 The mem regions of the two accesses must overlap

 The write access updates the mem area with a different value

* Note that the above conditions do not require synchronisation — which
means more general than data races!

An example

Test 1 Concurrent test Test 2 e | eft kernel thread - writer

0 = ket(... PX PROTO OL2TP r0) = socket(..., PX PROTO OL2TP) .
= gocketAF INET o) rl = socket(AF_INET, ..) » Right kernel thread - reader

connect(r0, ...rl..., ...)

connect(r0, ...rl...; ...) sendmsg(10, ...)

) N - pppol2tp_connect() -
K i ' "
2tp_tunnel_register) @ ——>@ pppol2tp_connect() fetches the previously
/tunnel->sock is initialized as () / tunnel=12tp tunnel get(sk, tunnel 1d); reg |Ste red 'tu N nel
spin_lock bh(12tp tunnel list lock); < -)

list add rcu(&tunnel->list, 12tp tunnel list); | N e
/]

12tp xmit core
spin unlock bh(12tp tunnel list lock); P_ = 0

o [2tp_tunnel_reqgister() —

//tunnel becomes accessible // ls)tlll‘u;:t Sl? ck *ls(lz :)tunnel->sock; reg |Ste s a new tu N ﬂe|
_lock sock(sk);
tunnel->sock = sk; o) \%T null pointel*dereference error)
TPt P * Bug — reader accesses the

tunnel before the writer has
Initialised the sock field

Snowboard Design Overview

Sequential Test Generation and Profiling

kernel fuzzer
(e.qg., Syzkaller)

o]l -

STa
open(file1)
rename(file1, s)

Shared memory Shared
access profiling memory
access set

VM snapshot

PMC
Identification

PMC

|dentification
(Algorithm 1)

PMC
Exploration

PMC

Clustering strategy Concurrent

test
generator

S-FULL
S-CH
S-INS

Concurrent Test Execution

) m
writer reader
\

Thread 1 Thread 2

Kernel console checker
Data race detector

CT =[S, SI]

-»| Syscalls &
schedule hint

Sequential Test Generation (ST_A)

tion and Profiling

» External fuzzer, static analysis tools »[[S]*ggg;gm}

A
kernel fuzzer
(e.g., Syzkaller)

 Snowboard uses the coverage metrics exported by the generator to select
tests with high coverage and low overlap.

 Snowboard dynamically profiles (sequential execution) selected tests by
recording

* Type of mem access and instruction addresses, address range, vals read/written
* Runs from the same fixed initial kernel state

o Standard assumption: only non-stack accesses are potentially shared (uses ESP
register to prune stack accesses)

kernel fuzzer
(e.g., Syzkaller)

[| | [| Sequential Test Generation and Profiling o)
Identification Exploration
Clusteri trat
|| - STA N y oNIG ustering strategy
access profiling m ificati S-FULL
S access set Algori 1 S-CH
VM S-.I.NS

 (Gathers all shared accesses across all sequential tests

* |ndexes them by the mem range they access
* Detect overlapping mem ranges for reads and writes

e |f for each pair <W, R> the value written is different from the value read, then
designhated as a PMC.

* |mplemented as a nested scan over the index structure

10

PMC PMC
Identification Exploration

PMC
Clustering strategy

writer reader
w__—

PMC
Identification > S-FULL
(Algorithm 1) S-CH
S-INS

Thread 1 Thread 2

PMC ldentification

e 169 billion PMCs in Linux kernel 5.12-rc3 — _strateey [Filter Predicate]

(insyw, addry, byte,, valuey, ins;, addr;, byte,, value;) /
too large! SFULL (o)
_ . Sl (insw, addry, byte, ins;, addr,, byte,) /
* |Insights — many PMCs are equivalent under [True]
some Crlterla S-CH (insw, addry, byte , ins;, addry, byte) /
NULL [value,,=0]
 Form clusterings of PMCs on such criteria S-CH ~ (insy, addrw, bytey, ins;, addry, byte,) /

UNALIGNED [(addr, != addr,, or byte, != byte,)]

S-CH (insy, addry,, byte, ins;, addr;, byte,) /

 Not sound but complete DOUBLE [df leader]
S_INS (inSwyr) /
* |t may club two PMCs even when they expose [True]
distance misbehaviours oINS pa (nSws inse) /
[True]

(addry, byte,, addr;, byte.) /

S-MEM
[True]

11

Concurrent Test Execution

« PMC can map to multiple test pairs

« Randomly choose one to construct CT
e CT =<«t1, t2, sched-hint>
e Scheduling component

* Trigger the PMC and not trigger the PMC

 Avoid deadlocks/livelocks

12

Concurrent Test Execution

Sequential Test Generation and Profiling

. Algorithm [[==
\Y

PMC PMC
Identification Exploration

PMC
Clustering strategy

PMC
Identification > S-FULL
(Algorithm 1) S-CH
S-INS

e Check if thread is live

* |f not then yield control to other thread

* For each access in the currently executing instruction
* Switch to nondet scheduling if pmc access is arriving (for future trials)
* |f pmc access performed then note the previous access to the PMC one

 Now switch to nondet scheduling
* |f the current execution ends in a bug — record it.

* Check if other PMCs were observed in the trial - if yes then record them for future trials

13

e Reader and writer have
different locks

« A bad MAC address can be
read by the reader

 Was unreported for 10 years.

Real harmful bugs detected

Test 1

Concurrent test Test 2

r0 = socket(...)
sendmsg(10, ...)

r0 = socket(...)

ioctl(r0, sock SIOCETHTOOL, ...)

.

\

(

r

\.

eth commit mac addr change()

//Inside rtnl lock()
memcpy(dev->dev addr, addr->sa data,

ETH ALEN);

~

-

J/

_

\

2

dev ifsioc locked()

//Inside rcu_read lock()

memcpy(ifr->ifr hwaddr.sa data, dev-

>dev addr,...);

J

Kernel thread 1

14

.

75 Corrupted MAC address

Kernel thread 2

Discussion

* Low precision (36 %) yet was able to find subtle errors.
 What about bugs involving more than 2 threads or more than one variable”?
 Why did they leave out deadlocking executions from consideration?

 Weak memory orderings?

* Breaking of assumptions for PMC computation: If instructions touch large memory
segments (DBMS updating in-memory indexes).

e (Guided test generation

* Any other?

15

