Syrup: User-Defined Scheduling
Across the Stack

Kostis Kaffes, Jack Tigar Humphries,

David Mazieres, Christos Kozyrakis

Stanford MAST



Scheduling matters

* “Good” scheduling eliminates problems such as head-of-line
blocking, lack of work conservation, and load imbalance.

* Fine-tailored policies can improve performance by an order
of magnitude or more.



Example: RocksDB Server

* Multi-threaded RocksDB UDP server using SO_REUSEPORT.

*  Vanilla Linux assigns packets from 50 clients to
socket /threads using a hash of the 5-tuple.
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Example: RocksDB Server

*  Round Robin iterates over sockets/threads.
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Simply changing socket matching policy provides > 75%
performance improvement.



Example: RocksDB Server

*  Round Robin iterates over sockets/threads.
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Goal

Allow application developers define and

deploy custom scheduling policies.

performance improvement.
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#1: Expressibility

Different applications and workloads perform best under different
scheduling policies:

* Low Variability = FCFS scheduling

* High Variability = Preemption or Resource Partitioning

* Memory Intensive = Locality



#2: Cross-Layer Deployment

Scheduling takes place across multiple layers of the stack.
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#3: Low Overhead

Many modern workloads operate at microsecond scale.

Making and enforcing a scheduling decision should not add too
much overhead =2 ~1us or less!



#4: Isolation

Different applications should be able to safely co-deploy their

custom policies.
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“Legacy” Scheduling Options

Implement your favorite policy in the Linux kernel:

+ Can implement any policy.

- Hard to coordinate across layers.

- Probably only people attending netdev can do it.

Build a data-plane OS:

+ High performance / low overhead.

- Incompatible with existing applications.
- Hard and costly to maintain
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Tools for Malleable Scheduling

eBPF

In-kernel virtual machine.
Allows running sanitized user-provided code in the kernel.

ghOSt

Framework that offloads kernel thread scheduling to userspace
agents.
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Application Code

syr_deploy_policy(<policy_file>, <hook>);

/[ Interact with the policy. a
syr_map_lookup(<map>, <key>);
syr_map_update(<map>, <key>, <value>);

Policy file: Example Hash-based Policy\

uint32_t schedule(void *pkt_start,
void * pkt_end) {
uint32_t hash =
hash((struct *udphdr) pkt_start);
int num_cores =
map_lookup(core_map, 0);

return hash % num_cores; c

}

Specify the scheduling
policy in C.

The daemon (Syrupd)

deploys the policy to the °

target hook(s).
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Maps

Deploy the policy from the
application code.

The different layers can
communicate using eBPF maps.

A daemon (Syrupd)
compiles the policy for the
target hook(s).



Meeting the Scheduling Requirements

1. Expressibility = Treat scheduling as online matching problem.

2. Cross-layer deployment > Leverage eBPF and ghOSt
mechanisms to deploy code across the stack.

. Low overhead = See evaluation.

W

4. lsolation =2 Use a global arbiter that manages scheduling
policies for different applications.



Scheduling as Online Matching

Syrups represents scheduling policies as matching functions
between inputs and executors that process the inputs.
Inputs: Network packets, connections, threads, ...

Executors: NIC queues, network sockets, cores, ...

+ Almost declarative scheduling — Users specify the matching and
the underlying system enforces it.

+ Scheduling code portable across different layers of the stack.
+ Scheduling broken down into a series of "small" decisions,

improving the composability and the understandability of even
complex policies. °



Policy Example: Thread Selection

luint32_t idx = 0;

2uint32_t schedule(void *pkt_start,
3 void *xpkt_end) {
4 1dx ++;

5 return 1dx % NUM_THREADS;

6 }

7
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Cross-layer communication with eBPF maps

User-defined eBPF maps are used to communicate between
different scheduling hooks and the user-space.

System-defined eBPF maps are used to hold references to
executors, e.g., network sockets or cores.



Providing Isolation Between the Kernel and Applications

The eBPF verifier makes sure that an application policy does
“break” the underlying system.

ghOSt scheduling policies run at lower priority than CFS, allowing
the system to reclaim resources.



Syrupd Provides Isolation Among Applications

All policy deployment requests go through Syrupd which:

1. Uses BPF_MAP_TYPE_PROG_ARRAY to filter inputs to application-
specific policies in eBPF hooks.

2. Deploys ghOSt user-space agents for each application that
only handle the corresponding application’s threads.
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Evaluation Questions

1. Can Syrup be used to express and implement a variety of
scheduling policies?

2. Can Syrup be used for cross-layer scheduling?

3. What are Syrup’s overheads?



Experimental Setup

- Multi-threaded RocksDB UDP server using SO _REUSEPORT.
—Each thread pinned to a different core.
-2 Serving mix of 99.5% GETs (10 usec) and 0.5% SCANs (700 us).

We use to Syrup to implement various socket selection policies.



Vanilla Linux Policy
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Round-Robin Policy
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SCAN Avoid Policy

USERSPACE

1 Request * req = parse_request(pkt);
21f (req->type == SCAN)
map_update (&scan_map, &tid, SCAN);
4 // Do processing...
Notify kernel when 51f (req->type == SCAN)
handling a SCAN. 6 map_update (&scan_map, &tid, GET):
7
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SCAN Avoid Policy

KERNEL
1T uint32_t schedule(void *pkt_start,
2 void *pkt_end) {

3
4
5
6

uint32_t cur_idx = 0;
for (int i = @; i < NUM_THREADS; i++) {
cur_idx = get_random() % NUM_THREADS;
uint64_t * scan = map_lookup(&scan_map, &cur_idx)
if (!scan)
return PASS;

Avoid scheduling packets to // Stop searching when a non-SCAN core is found.
cores handling SCAN:Ss. if (*scan == GET)
break;
12 3
13 return cur_idx;
14 }

15
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SCAN Avoid Policy
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Size Interval Task Assignment Policy
KERNEL

luint32_t idx = 0;

2
3 uint32_t schedule(void *pkt_start,

Parse the request type in . Lot Skae G
5 if (pkt_end - pkt_start < 16)

the kernel. 6 return PASS;

7
8 // First 8 bytes are UDP header.
9 uint64_t *x type = (uint64_t *) (pkt + 8);
10

if (*type == SCAN)
Steer all SCANs to a return 0;

specific thread.
i e+ =
return (idx % (NUM_THREADS - 1)) + 1;
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SITA Policy

Round Robin
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SITA Policy

5000 : : : IIIII

== Vanilla Linux B IRl EREEE
— 4000 === Round Robin

Conclusion

Using Syrup, we can quickly iterate over

different policies and improve performance.

Better

32



Scheduling Across Layers

RocksDB workload 50% GETs -- 50% SCAN:s.

Problem: Most of the load comes from SCAN:.
Solution: Use the SCAN Avoid policy and add more threads to

avoid Hol blocking.



SCAN Avoid — 50% GET — 50 % SCAN

GET Latency increases as all
cores are occupied by SCANS.
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Scheduling Across Layers

RocksDB workload 50% GETs -- 50% SCAN:s.

Problem: Most of the load comes from SCAN:.
Solution: Use ghOSt to give higher priority to GET threads.

Threads notify the ghOSt scheduler about what type of request
they handle.



Thread Scheduling — 50% GET — 50 % SCAN
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Scheduling Across Layers

RocksDB workload 50% GETs -- 50% SCAN:s.

Problem: Most of the load comes from SCAN:.

Solution: Combine SCAN Avoid + thread scheduling.

- SCAN Avoid avoids head-of-line blocking and notifies ghOSt
of the request type handled by a thread before it wakes up.

> ghOSt thread scheduling makes sure that threads handling
GETs execute immediately.




Request + Thread Scheduling — 50% GET — 50 % SCAN
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Request + Thread Scheduling — 50% GET — 50 % SCAN

. SCAN Avoid A Thread Scheduling x SCAN Avoid + Thread Scheduling
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Syrup enables policies that span across layers
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Syrup’s Overheads

1. Policy Overhead:

Policy LoC Instructions Cycles (+ stdev)
Round Robin 6 56 1563 (+ 89)
SCAN Avoid 21 311 1709 (+ 115)
SITA 16 81 1699 (+ 210)

2. Communication Overhead
= mmapped eBPF maps access ~= memory access
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Scheduling over a TCP Stream

Syrup currently supports scheduling UDP datagrams and TCP

connections.
- What about intra-connection Hol blocking?2

Opportunity: Add eBPF programmability to KCM (kernel
connection multiplexor) and support it in Syrup.



Future Syrup Targets

The matching abstraction for scheduling is powerful and applies to
most settings:
SmartNICs — Selecting an RX queue

—> Some support eBPF (Netronome example in the paper)
Switches — Selecting a port

- Can we develop a P4 backend for Syrup?

- How would maps work in a distributed setting?
Load Balancers — Selecting an IP address

—> Run eBPF bytecode safely in userspace?



Simplifying Programming for Syrup (and eBPF)

Syrup makes the declaration and deployment of scheduling
policies simpler.

Users still need to write most of their policies in eBPF-compliant C
code.

Question: Can we further reduce their burden?
- Automate the bound checks.



Support for Late Binding

) Low-overhead

( Hol blocking

Late Binding @ Sockets pull packets when available:
Packet = (+) No Hol blocking

Early Binding . .
chke’rs are assigned to sockets upon arrival:
Packet <

(-) Higher minimum latency
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Syrup in a Multi-Tenant Environment

Syrupd allows different applications to co-locate their policies.

Questions
- What about malicious users?
- |s their existence within an OS a realistic scenario?

- Can we use Syrupd to safely enable non-root users to deploy
eBPF programs?



Conclusion

Scheduling is a fundamental operation that:
* Varies across applications.

* Spans across different layers of the stack.
* Requires low overhead.

Syrup enables users to customize scheduling by:
* Treating scheduling as an online matching problem.

* Leveraging eBPF and ghOSt to safely and efficiently deploy
scheduling policies across the stack.

Soon available at:

\ @ github.com/stanford-mast/syrup
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https://github.com/stanford-mast/syrup

