Syrup: User-Defined Scheduling
Across the Stack

Kostis Kaffes, Jack Tigar Humphries,

David Mazieres, Christos Kozyrakis

Stanford MAST

Scheduling matters

* “Good” scheduling eliminates problems such as head-of-line
blocking, lack of work conservation, and load imbalance.

* Fine-tailored policies can improve performance by an order
of magnitude or more.

Example: RocksDB Server

* Multi-threaded RocksDB UDP server using SO_REUSEPORT.

* Vanilla Linux assigns packets from 50 clients to
socket /threads using a hash of the 5-tuple.

1000

[E—
N

=@=Vanilla Linux

o0

)

=
p—
\)

D

)

)
[E—
-}

AN OO

ropped Requests

[\
-
-

Load imbalance across

Heg | 99% Latency (us)
N
S
S

200
Load (RPS x 1e3)

e sockets introduced by 0
Load (RPS x 1
oad (RPS x randomness destroys

100

oo |

performance

300 400 500

Example: RocksDB Server

* Round Robin iterates over sockets/threads.

1000

. 14 =@=Vanilla Linux

~ 800 312 Round Robin
2 =10
> (D)
9 600 a% g
I3 g5
3 400 = 6
: S 4
200 e)

0 B O MOtd O«

0 100 200 300 400 500 0 100 200 300 400 500

Load (RPS x 1e3) Load (RPS x 1e3)

Simply changing socket matching policy provides > 75%
performance improvement.

Example: RocksDB Server

* Round Robin iterates over sockets/threads.

1000 14
=@=Vanilla Linux

w2

Goal

Allow application developers define and

deploy custom scheduling policies.

performance improvement.

Qutline

* Motivation
* Requirements
* Syrup Design
* Evaluation

* Discussion

#1: Expressibility

Different applications and workloads perform best under different
scheduling policies:

* Low Variability = FCFS scheduling

* High Variability = Preemption or Resource Partitioning

* Memory Intensive = Locality

#2: Cross-Layer Deployment

Scheduling takes place across multiple layers of the stack.

[Application]

Kernel Scheduler
[Scheduler]

J

i Networking Stack)

l Scheduler \

Network Interface Card
[Scheduler]

#3: Low Overhead

Many modern workloads operate at microsecond scale.

Making and enforcing a scheduling decision should not add too
much overhead =2 ~1us or less!

#4: Isolation

Different applications should be able to safely co-deploy their

custom policies.

Kernel Scheduler

[Scheduler1] [Scheduler2]

J

Networking Stack)

[Scheduler1] ‘ Scheduler2 \
- - _)

L Network Interface Card }

[Scheduler1] [Scheduler2]

“Legacy” Scheduling Options

Implement your favorite policy in the Linux kernel:

+ Can implement any policy.

- Hard to coordinate across layers.

- Probably only people attending netdev can do it.

Build a data-plane OS:

+ High performance / low overhead.

- Incompatible with existing applications.
- Hard and costly to maintain

11

Tools for Malleable Scheduling

eBPF

In-kernel virtual machine.
Allows running sanitized user-provided code in the kernel.

ghOSt

Framework that offloads kernel thread scheduling to userspace
agents.

Qutline

* Motivation

Requirements
Syrup Design
Evaluation

Discussion

13

Application Code

syr_deploy_policy(<policy_file>, <hook>);

/[Interact with the policy. a
syr_map_lookup(<map>, <key>);
syr_map_update(<map>, <key>, <value>);

Policy file: Example Hash-based Policy\

uint32_t schedule(void *pkt_start,
void * pkt_end) {
uint32_t hash =
hash((struct *udphdr) pkt_start);
int num_cores =
map_lookup(core_map, 0);

return hash % num_cores; c

}

Specify the scheduling
policy in C.

The daemon (Syrupd)

deploys the policy to the °

target hook(s).

C N

Kernel Scheduler

(’[Scheduling Hook]\
J
N

- N

Networking Stack

\-»[Scheduling Hook]\
(S)
N\

Network Interface Card

Scheduling Hook]\

Maps

Deploy the policy from the
application code.

The different layers can
communicate using eBPF maps.

A daemon (Syrupd)
compiles the policy for the
target hook(s).

Meeting the Scheduling Requirements

1. Expressibility = Treat scheduling as online matching problem.

2. Cross-layer deployment > Leverage eBPF and ghOSt
mechanisms to deploy code across the stack.

. Low overhead = See evaluation.

W

4. lsolation =2 Use a global arbiter that manages scheduling
policies for different applications.

Scheduling as Online Matching

Syrups represents scheduling policies as matching functions
between inputs and executors that process the inputs.
Inputs: Network packets, connections, threads, ...

Executors: NIC queues, network sockets, cores, ...

+ Almost declarative scheduling — Users specify the matching and
the underlying system enforces it.

+ Scheduling code portable across different layers of the stack.
+ Scheduling broken down into a series of "small" decisions,

improving the composability and the understandability of even
complex policies. °

Policy Example: Thread Selection

luint32_t idx = 0;

2uint32_t schedule(void *pkt_start,
3 void *xpkt_end) {
4 1dx ++;

5 return 1dx % NUM_THREADS;

6 }

7

17

() Syrup Hook
(O User-space component

(O Kernel component

() Hardware
Application Application
Thread Thread
| ghOSt |

[Thread Scheduler }

Core }

o |

Thread Scheduling Syrup Hook

Application
Socket

| Socket Select |

Protocol
Stack

[XDP SKB
.

SKB
Allocation

)N
[XDP DRV
NIC Driver

N

bs

N) N

SoftIRQ Core
)
[CPU Redirect }
[RX Core

-

=) Lo

Application
Socket

L)

| Socket Select |

Protocol
Stack

[XDPSKB |
Va 0\
SKB
Allocation
S)
[XDPDRV |

NIC Driver

s M)

SoftIRQ Core
. 4‘ J
[CPU Redirect }
RX Core }

Scheduling across the stack with eBPF and ghOSt

XDP Offload

Y)

Network Interface Card

- S

Network Stack Syrup Hooks

Cross-layer communication with eBPF maps

User-defined eBPF maps are used to communicate between
different scheduling hooks and the user-space.

System-defined eBPF maps are used to hold references to
executors, e.g., network sockets or cores.

Providing Isolation Between the Kernel and Applications

The eBPF verifier makes sure that an application policy does
“break” the underlying system.

ghOSt scheduling policies run at lower priority than CFS, allowing
the system to reclaim resources.

Syrupd Provides Isolation Among Applications

All policy deployment requests go through Syrupd which:

1. Uses BPF_MAP_TYPE_PROG_ARRAY to filter inputs to application-
specific policies in eBPF hooks.

2. Deploys ghOSt user-space agents for each application that
only handle the corresponding application’s threads.

Qutline

* Motivation
* Requirements
* Syrup Design
* Evaluation

* Discussion

Evaluation Questions

1. Can Syrup be used to express and implement a variety of
scheduling policies?

2. Can Syrup be used for cross-layer scheduling?

3. What are Syrup’s overheads?

Experimental Setup

- Multi-threaded RocksDB UDP server using SO _REUSEPORT.
—Each thread pinned to a different core.
-2 Serving mix of 99.5% GETs (10 usec) and 0.5% SCANs (700 us).

We use to Syrup to implement various socket selection policies.

Vanilla Linux Policy

-

==@®==Vanilla Linux

5000
~~ 40001

Very high latency even at low load

due to Hol blocking

400000

350000
Better

load imbalance across sockets
300000

O
—
()}
- |
d
d
(@)
o
=
2
<
e
O
>N
—
ohlv
O
=
O
>

2
I

=
)

N 1000-

25

Round-Robin Policy

<

= .5

g 8

—

=S

2 &

S O

> Y

_.*AT*L
o o
o o
o o
W

o
)
O
<

There is still HoL blocking!

sn) \mm:&mm %6

400000

350000
Better

balancing

300000

250000

Round-robin provides good load

%

N 1000+

26

SCAN Avoid Policy

USERSPACE

1 Request * req = parse_request(pkt);
21f (req->type == SCAN)
map_update (&scan_map, &tid, SCAN);
4 // Do processing...
Notify kernel when 51f (req->type == SCAN)
handling a SCAN. 6 map_update (&scan_map, &tid, GET):
7

27

SCAN Avoid Policy

KERNEL
1T uint32_t schedule(void *pkt_start,
2 void *pkt_end) {

3
4
5
6

uint32_t cur_idx = 0;
for (int i = @; i < NUM_THREADS; i++) {
cur_idx = get_random() % NUM_THREADS;
uint64_t * scan = map_lookup(&scan_map, &cur_idx)
if (!scan)
return PASS;

Avoid scheduling packets to // Stop searching when a non-SCAN core is found.
cores handling SCAN:Ss. if (*scan == GET)
break;
12 3
13 return cur_idx;
14 }

15

28

SCAN Avoid Policy

5000
==@==Vanilla Linux

4000 === Round Robin
3 =fe=SCAN Avoid

Avoids Hol blocking at
low load!

2000

FENEY:|

0 50000 100000

250000

Load (RPS)

There is still Hol blocking at

medium and high loads.

300000

400000

350000

Better
29

Size Interval Task Assignment Policy
KERNEL

luint32_t idx = 0;

2
3 uint32_t schedule(void *pkt_start,

Parse the request type in . Lot Skae G
5 if (pkt_end - pkt_start < 16)

the kernel. 6 return PASS;

7
8 // First 8 bytes are UDP header.
9 uint64_t *x type = (uint64_t *) (pkt + 8);
10

if (*type == SCAN)
Steer all SCANs to a return 0;

specific thread.
i e+ =
return (idx % (NUM_THREADS - 1)) + 1;

30

SITA Policy

Round Robin

-

==@==Vanilla Linux

—=

=aje=SCAN Avoid

5000

=
3
—
6

— 2000/

)
)
o
<t

sn) AouQje

100000 150000 200000 250000 300000 350000
Load (RPS) Better

50000

O
-

400000

%6 -;wmgms‘vv

31

SITA Policy

5000 : : : IIIII

== Vanilla Linux B IRl EREEE
— 4000 === Round Robin

Conclusion

Using Syrup, we can quickly iterate over

different policies and improve performance.

Better

32

Scheduling Across Layers

RocksDB workload 50% GETs -- 50% SCAN:s.

Problem: Most of the load comes from SCAN:.
Solution: Use the SCAN Avoid policy and add more threads to

avoid Hol blocking.

SCAN Avoid — 50% GET — 50 % SCAN

GET Latency increases as all
cores are occupied by SCANS.

o 2 4 6 8 10 0o 2 4 6 8 10 12 14
Load (RPS x 1e3) Load (RPS x 1e3)

GET Latency SCAN Latency .

Scheduling Across Layers

RocksDB workload 50% GETs -- 50% SCAN:s.

Problem: Most of the load comes from SCAN:.
Solution: Use ghOSt to give higher priority to GET threads.

Threads notify the ghOSt scheduler about what type of request
they handle.

Thread Scheduling — 50% GET — 50 % SCAN

‘ SCAN Avoid ‘ Thread Scheduling

1000 5000 j
‘ ~4000
o . 2
G!ET.Lq’rency is high as ’rhel.re is >3000
still intra-socket Hol blocking. S
- = 2000]
N N
o
) 200 < 1000 A
0 , 0 ' ' ' ' ' ' '
0 2 4 6 8 10 0 2 4 6 § 10 12 14

Load (RPS x 1e3) Load (RPS x 1e3)

GET Latency SCAN Latency .

Scheduling Across Layers

RocksDB workload 50% GETs -- 50% SCAN:s.

Problem: Most of the load comes from SCAN:.

Solution: Combine SCAN Avoid + thread scheduling.

- SCAN Avoid avoids head-of-line blocking and notifies ghOSt
of the request type handled by a thread before it wakes up.

> ghOSt thread scheduling makes sure that threads handling
GETs execute immediately.

Request + Thread Scheduling — 50% GET — 50 % SCAN

. SCAN Avoid A Thread Scheduling x SCAN Avoid + Thread Scheduling

"T

Avoids scheduling delays Reduces even SCAN-to-
at high load

Avoids intra-socket Hol

blocking at low load

0 2 4 6 8 10 12 14
Load (RPS x le3) Load (RPS x 1e3)

GET Latency SCAN Latency .

Request + Thread Scheduling — 50% GET — 50 % SCAN

. SCAN Avoid A Thread Scheduling x SCAN Avoid + Thread Scheduling

1000 , 5000

4000

Conclusion

Syrup enables policies that span across layers

99% Latency (us)

and communicate with each other, maximizing

performance.

GET Latency SCAN Latency .

Syrup’s Overheads

1. Policy Overhead:

Policy LoC Instructions Cycles (+ stdev)
Round Robin 6 56 1563 (+ 89)
SCAN Avoid 21 311 1709 (+ 115)
SITA 16 81 1699 (+ 210)

2. Communication Overhead
= mmapped eBPF maps access ~= memory access

Qutline

* Motivation
* Requirements
* Syrup Design
* Evaluation

* Discussion

Scheduling over a TCP Stream

Syrup currently supports scheduling UDP datagrams and TCP

connections.
- What about intra-connection Hol blocking?2

Opportunity: Add eBPF programmability to KCM (kernel
connection multiplexor) and support it in Syrup.

Future Syrup Targets

The matching abstraction for scheduling is powerful and applies to
most settings:
SmartNICs — Selecting an RX queue

—> Some support eBPF (Netronome example in the paper)
Switches — Selecting a port

- Can we develop a P4 backend for Syrup?

- How would maps work in a distributed setting?
Load Balancers — Selecting an IP address

—> Run eBPF bytecode safely in userspace?

Simplifying Programming for Syrup (and eBPF)

Syrup makes the declaration and deployment of scheduling
policies simpler.

Users still need to write most of their policies in eBPF-compliant C
code.

Question: Can we further reduce their burden?
- Automate the bound checks.

Support for Late Binding

) Low-overhead

(Hol blocking

Late Binding @ Sockets pull packets when available:
Packet = (+) No Hol blocking

Early Binding . .
chke’rs are assigned to sockets upon arrival:
Packet <

(-) Higher minimum latency

45

Syrup in a Multi-Tenant Environment

Syrupd allows different applications to co-locate their policies.

Questions
- What about malicious users?
- |s their existence within an OS a realistic scenario?

- Can we use Syrupd to safely enable non-root users to deploy
eBPF programs?

Conclusion

Scheduling is a fundamental operation that:
* Varies across applications.

* Spans across different layers of the stack.
* Requires low overhead.

Syrup enables users to customize scheduling by:
* Treating scheduling as an online matching problem.

* Leveraging eBPF and ghOSt to safely and efficiently deploy
scheduling policies across the stack.

Soon available at:

\ @ github.com/stanford-mast/syrup

47

https://github.com/stanford-mast/syrup

