
Syrup: User-Defined Scheduling
Across the Stack

Kostis Kaffes, Jack Tigar Humphries,
David Mazières, Christos Kozyrakis

Scheduling matters

2

• “Good” scheduling eliminates problems such as head-of-line
blocking, lack of work conservation, and load imbalance.

• Fine-tailored policies can improve performance by an order
of magnitude or more.

Example: RocksDB Server

3

• Multi-threaded RocksDB UDP server using SO_REUSEPORT.
• Vanilla Linux assigns packets from 50 clients to

socket/threads using a hash of the 5-tuple.

Better

Better

Load imbalance across
sockets introduced by
randomness destroys

performance

Example: RocksDB Server

4

• Round Robin iterates over sockets/threads.

Simply changing socket matching policy provides > 75%
performance improvement.

Example: RocksDB Server

5

• Round Robin iterates over sockets/threads.

Simply changing socket matching policy provided > 75%
performance improvement.

Goal
Allow application developers define and

deploy custom scheduling policies.

Outline

• Motivation

• Requirements

• Syrup Design

• Evaluation

• Discussion

6

#1: Expressibility

7

Different applications and workloads perform best under different
scheduling policies:
• Low Variability à FCFS scheduling
• High Variability à Preemption or Resource Partitioning
• Memory Intensive à Locality
• …

#2: Cross-Layer Deployment

8

Scheduling takes place across multiple layers of the stack.

Application

Kernel Scheduler

Networking Stack
Scheduler

Scheduler

Network Interface Card
Scheduler

#3: Low Overhead

9

Many modern workloads operate at microsecond scale.

Making and enforcing a scheduling decision should not add too
much overhead à ~1us or less!

#4: Isolation

10

Different applications should be able to safely co-deploy their
custom policies.

App1

Kernel Scheduler

Networking Stack

Scheduler1

Network Interface Card

App2

Scheduler2

Scheduler1 Scheduler2

Scheduler1 Scheduler2

“Legacy” Scheduling Options

11

Implement your favorite policy in the Linux kernel:
+ Can implement any policy.
- Hard to coordinate across layers.
- Probably only people attending netdev can do it.

Build a data-plane OS:
+ High performance / low overhead.
- Incompatible with existing applications.
- Hard and costly to maintain

Tools for Malleable Scheduling

12

eBPF
In-kernel virtual machine.
Allows running sanitized user-provided code in the kernel.

ghOSt
Framework that offloads kernel thread scheduling to userspace
agents.

Outline

• Motivation

• Requirements

• Syrup Design

• Evaluation

• Discussion

13

14

Maps

Kernel Scheduler

Networking Stack

Scheduling Hook

Scheduling Hook

Network Interface Card
Scheduling Hook

Application Code
…
syr_deploy_policy(<policy_file>, <hook>);
…
// Interact with the policy.
syr_map_lookup(<map>, <key>);
syr_map_update(<map>, <key>, <value>);

Policy file: Example Hash-based Policy

uint32_t schedule(void *pkt_start,
 void * pkt_end) {
 uint32_t hash =
 hash((struct *udphdr) pkt_start);
 int num_cores =
 map_lookup(core_map, 0);
 return hash % num_cores;
}

2

3

5

4

Syrupd

1

Specify the scheduling
policy in C.

1
Deploy the policy from the
application code.

2

A daemon (Syrupd)
compiles the policy for the
target hook(s).

3

The daemon (Syrupd)
deploys the policy to the
target hook(s).

4
The different layers can
communicate using eBPF maps.

5

Meeting the Scheduling Requirements

15

1. Expressibility à Treat scheduling as online matching problem.
2. Cross-layer deployment à Leverage eBPF and ghOSt

mechanisms to deploy code across the stack.
3. Low overhead à See evaluation.
4. Isolation à Use a global arbiter that manages scheduling

policies for different applications.

Scheduling as Online Matching

16

Syrups represents scheduling policies as matching functions
between inputs and executors that process the inputs.
Inputs: Network packets, connections, threads, …
Executors: NIC queues, network sockets, cores, …

+ Almost declarative scheduling – Users specify the matching and
the underlying system enforces it.
+ Scheduling code portable across different layers of the stack.
+ Scheduling broken down into a series of "small" decisions,
improving the composability and the understandability of even
complex policies.

Policy Example: Round-Robin Thread Selection

17

Scheduling across the stack with eBPF and ghOSt

18

Network Interface Card

XDP DRV

XDP SKB
SKB

Allocation

NIC Driver

RX Core

CPU Redirect

XDP Offload

Protocol
Stack

Socket Select

Application
Socket

Application
Socket

SoftIRQ Core

XDP DRV

XDP SKB
SKB

Allocation

NIC Driver

RX Core

CPU Redirect

Protocol
Stack

Socket Select

SoftIRQ Core

CoreCore

Thread Scheduler
ghOSt

Application
Thread

Syrup Hook

Network Stack Syrup Hooks

User-space component

Kernel component

Thread Scheduling Syrup Hook

Hardware

Application
Thread

Cross-layer communication with eBPF maps

19

User-defined eBPF maps are used to communicate between
different scheduling hooks and the user-space.

System-defined eBPF maps are used to hold references to
executors, e.g., network sockets or cores.

Providing Isolation Between the Kernel and Applications

20

The eBPF verifier makes sure that an application policy does
“break” the underlying system.

ghOSt scheduling policies run at lower priority than CFS, allowing
the system to reclaim resources.

Syrupd Provides Isolation Among Applications

21

All policy deployment requests go through Syrupd which:

1. Uses BPF_MAP_TYPE_PROG_ARRAY to filter inputs to application-
specific policies in eBPF hooks.

2. Deploys ghOSt user-space agents for each application that
only handle the corresponding application’s threads.

Outline

• Motivation

• Requirements

• Syrup Design

• Evaluation

• Discussion

22

Evaluation Questions

23

1. Can Syrup be used to express and implement a variety of
scheduling policies?

2. Can Syrup be used for cross-layer scheduling?
3. What are Syrup’s overheads?

Experimental Setup

24

àMulti-threaded RocksDB UDP server using SO_REUSEPORT.
àEach thread pinned to a different core.
àServing mix of 99.5% GETs (10 usec) and 0.5% SCANs (700 us).

We use to Syrup to implement various socket selection policies.

Vanilla Linux Policy

25

Very high latency even at low load
due to HoL blocking

High variability at high load due to
load imbalance across sockets

Better

Better

Round-Robin Policy

26

There is still HoL blocking!
Round-robin provides good load

balancing

Better

Better

SCAN Avoid Policy

27

USERSPACE

Notify kernel when
handling a SCAN.

SCAN Avoid Policy

28

KERNEL

Avoid scheduling packets to
cores handling SCANs.

SCAN Avoid Policy

29
Better

Better

Avoids HoL blocking at
low load!

There is still HoL blocking at
medium and high loads.8x

Size Interval Task Assignment Policy

30

KERNEL

Parse the request type in
the kernel.

Steer all SCANs to a
specific thread.

SITA Policy

31
Better

Better

Avoids HoL blocking even
at high load!

SITA Policy

32
Better

Better

Conclusion
Using Syrup, we can quickly iterate over

different policies and improve performance.

Scheduling Across Layers

33

RocksDB workload 50% GETs -- 50% SCANs.

Problem: Most of the load comes from SCANs.
Solution: Use the SCAN Avoid policy and add more threads to
avoid HoL blocking.

SCAN Avoid – 50% GET – 50 % SCAN

34GET Latency SCAN Latency

GET Latency increases as all
cores are occupied by SCANS.

Scheduling Across Layers

35

RocksDB workload 50% GETs -- 50% SCANs.

Problem: Most of the load comes from SCANs.
Solution: Add more threads to avoid HoL blocking.
Solution: Use ghOSt to give higher priority to GET threads.

Threads notify the ghOSt scheduler about what type of request
they handle.

Thread Scheduling – 50% GET – 50 % SCAN

36GET Latency SCAN Latency

GET Latency is high as there is
still intra-socket HoL blocking.

Scheduling Across Layers

37

RocksDB workload 50% GETs -- 50% SCANs.

Problem: Most of the load comes from SCANs.
Solution: Add more threads to avoid HoL blocking.
Solution: Use ghOSt to give higher priority to GET threads.
Solution: Combine SCAN Avoid + thread scheduling.
àSCAN Avoid avoids head-of-line blocking and notifies ghOSt

of the request type handled by a thread before it wakes up.
àghOSt thread scheduling makes sure that threads handling

GETs execute immediately.

Request + Thread Scheduling – 50% GET – 50 % SCAN

38GET Latency SCAN Latency

Avoids intra-socket HoL
blocking at low load

Avoids scheduling delays
at high load

Reduces even SCAN-to-
SCAN interference

Request + Thread Scheduling – 50% GET – 50 % SCAN

39GET Latency SCAN Latency

Conclusion
Syrup enables policies that span across layers
and communicate with each other, maximizing

performance.

Syrup’s Overheads

40

1. Policy Overhead:

2. Communication Overhead
à mmapped eBPF maps access ~= memory access

Outline

• Motivation

• Requirements

• Syrup Design

• Evaluation

• Discussion

41

Scheduling over a TCP Stream

42

Syrup currently supports scheduling UDP datagrams and TCP
connections.
àWhat about intra-connection HoL blocking??

Opportunity: Add eBPF programmability to KCM (kernel
connection multiplexor) and support it in Syrup.

Future Syrup Targets

43

The matching abstraction for scheduling is powerful and applies to
most settings:
SmartNICs – Selecting an RX queue

àSome support eBPF (Netronome example in the paper)
Switches – Selecting a port

à Can we develop a P4 backend for Syrup?
à How would maps work in a distributed setting?

Load Balancers – Selecting an IP address
à Run eBPF bytecode safely in userspace?

Simplifying Programming for Syrup (and eBPF)

44

Syrup makes the declaration and deployment of scheduling
policies simpler.

Users still need to write most of their policies in eBPF-compliant C
code.

Question: Can we further reduce their burden?
àAutomate the bound checks.

Support for Late Binding

45

Packet

Soc
ket

Soc
ket

Packets are assigned to sockets upon arrival:
(+) Low-overhead
(-) HoL blocking

Soc
ket

Soc
ket

Sockets pull packets when available:
(+) No HoL blocking
(-) Higher minimum latency

Packet

Late Binding

Early Binding

Syrup in a Multi-Tenant Environment

46

Syrupd allows different applications to co-locate their policies.

Questions
à What about malicious users?
à Is their existence within an OS a realistic scenario?
à Can we use Syrupd to safely enable non-root users to deploy
eBPF programs?

Conclusion
Scheduling is a fundamental operation that:
• Varies across applications.
• Spans across different layers of the stack.
• Requires low overhead.

Syrup enables users to customize scheduling by:
• Treating scheduling as an online matching problem.
• Leveraging eBPF and ghOSt to safely and efficiently deploy

scheduling policies across the stack.

github.com/stanford-mast/syrup
47

Soon available at:

https://github.com/stanford-mast/syrup

