
Winter Systems School 2023

Logic, Hoare Logic, Weakest Precondition, Invariant Inference, Equivalence Checking,
Superoptimization, Reflections on Trusting Trust

Sorav Bansal

sbansal@iitd.ac.in

December 4th-8th, 2023

1 / 54



Deductive logic

• Systematic evaluation of arguments Let us say we already know that (premises)

• All WSS23 attendees are motivated to learn more
• Mr. X is attending WSS23

Putting these thoughts together, you can infer (inference step)
• Mr. X is motivated to learn more

You can also infer
• If Ms. Y is attending WSS23, she must be motivated to learn more

But you cannot infer
• If Ms. Y is motivated to learn more, she must be attending WSS23

2 / 54



Generalization

• All WSS23 attendees are motivated to learn more

• Mr. X is attending WSS23

• So, Mr. X is motivated to learn more

• All F are G.

• n is F.

• So, n is G.

3 / 54



Generalization : Another example

• No three-year old understands quantum mechanics.

• Z is a three-year old.

• So, Z does not understand quantum mechanics.

• No F is G.

• n is F.

• So, n is not G.

4 / 54



More deduction examples

• No F is G.

• So, no G is F.

• All F are H.

• No G is H.

• So, no F is G.

• All F are either G or H.

• All G are K.

• All H are K.

• So, all F are K.

5 / 54



Some deductions can be derived from other deductions

• Is the following inference valid?
• Everyone loves a lover.
• Romeo loves Juliet.
• So, everyone loves Juliet.

6 / 54



Some deductions can be derived from other deductions

• Is the following inference valid?
• Everyone loves a lover.
• Romeo loves Juliet.
• So, everyone loves Juliet.

• Proof (sequence of one-step inferences)
(1) Everyone loves a lover (premiss )
(2) Romeo loves Juliet (premiss )
(3) Romeo is a lover (from 2 )
(4) Everyone loves Romeo (from 1,3)
(5) Juliet loves Romeo (from 4 )
(6) Juliet is a lover (from 5 )
(7) Everyone loves Juliet (from 1,6)

7 / 54



A counterexample disproves an inference

• Is the following inference valid?

1. All philosophers are logicians
2. So, all logicians are philosophers?

• Counterexamples (states of the world that satisfy 1 but do not satisfy 2)
• No philosopher and one logician who is not a philosopher.
• One philosopher (who is also a logician) and two logicians, neither of whom is a philosopher.
• ...

8 / 54



Introducing notation : connectives and, or

• The following are examples of valid inferences

1. Either A or B.
2. Not A.
3. So, B.

1. A and B.
2. So, A.

1. A.
2. B.
3. So, A and B.

1. A.
2. So, either A or B.

9 / 54



Propositional logic

• Consider atomic, or indecomposable, declarative sentences, e.g., ”Apple is a fruit”

• We assign distinct symbols to these atomic sentences: p,q,r,...

• Code up complex sentences in a compositional way, using symbols ¬ (not), ∧ (and), ∨
(or), and → (if-then/implies).

10 / 54



Natural deduction

• Calculus for reasoning about propositions.

• Proof rules that can allow us to infer formulas from other formulas.

• φ1, φ2, . . . , φn ` ψ
(e.g., (a ∧ ¬b)→ c,¬c , a ` b)

• This inference is valid if a proof can be found for it using the proof rules (derivation).

• The proof rules should allow valid arguments and disallow invalid ones.

11 / 54



Example of Natural deduction

• Proof rules

p → q ` ¬q → ¬p [Contra-positive (CP) ]
p, p → q ` q [Modus ponens (MP) ]
¬(p ∧ q) ` ¬p ∨ 6= q [Neg-over-and (NOA) ]
¬¬p ` p [Double negation elimination (DNE) ]
p ` ¬¬p [Double negation introduction (DNI)]
p ∨ q,¬p ` q [Or elimination (OE) ]

• Example: (a ∧ ¬b)→ c ,¬c , a ` b
(1) (a ∧ ¬b)→ c (premiss )
(2) ¬c (premiss )
(3) a (premiss )
(4) ¬c → ¬(a ∧ ¬b) (CP on 1 )
(5) ¬(a ∧ ¬b) (MP on 2,4)
(6) ¬a ∨ ¬¬b (NOA on 5 )
(7) ¬¬a (DNI on 3 )
(8) ¬¬b (OE on 6,7 )
(9) b (DNE on 8 )

12 / 54



Logic = formal language + axioms + proof system

• A formal system of logic consists of a formal language together with a set of axioms and
a proof system used to draw inferences from these axioms.

• Examples:
• Propositional logic
• Intuitionistic propositional logic (proof by contradition is not allowed)
• First-order logic — allows quantifiers for all ∀ and exists ∃ on values, e.g., integer values.

• ` ∀z1, z2 ∈ Z :z1 + z2 = z2 + z1.
• ` ∀r1 ∈ Z64 :∃r2 ∈ Z64 :(r1 ∗ r2 ≡ 1 mod 264) ∨ (r1 ∗ r2 ≡ 0 mod 264).
• ` ∃f1, f2, f3 ∈ F64 :f1 + (f2 + f3) 6= (f1 + f2) + f3.
• Hoare logic (to describe the possible behaviours of an imperative program)
• ...

13 / 54



Automatic solvers for satisfiability and validity

• Satisfiability (SAT) Solver
• Given a formula ψ in propositional logic, check its satisfiability
• Given a formula ψ in propositional logic, check its validity (by checking the satisfiability of
¬ψ).

• Satisfiability Modulo Theories (SMT) Solver
• Check satisfiability and validity of a first-order logic formula ψ in theories:

• Integers
• Bounded-integers (of size 2n)
• Floating-point numbers (with configurable bitwidths for mantissa and exponent)
• Uninterpreted functions
• Arrays (useful for modeling random access memory in computers)
• ...

14 / 54



Hoare logic

• Reason rigorously about the correctness of a computer program.

• A predicate is a boolean condition that must be satisfied by a state of the program

• Example predicates for the program ...; s1 : x := v ; s2 : ...:
• (PC = s2)→ (x = v)
• (PC = s1)→ (y = 0)
• (PC = s2)→ (x = v ∧ y = 0)
• (PC = s2)→ true (not saying much)

• An assertion is a predicate connected to a point (PC) in the program.
• The assertion must evaluate to true when the program is at that PC.

15 / 54



Hoare triple

• A Hoare triple is a triple that describes how the execution of a piece of code changes the
state of the computation.

• {P}C{Q} represents a Hoare triple where:
• C is a command.
• P and Q are assertions connected to the PCs before and after C respectively.
• P is called a precondition, and Q is called a postcondition.

• This triple represents a boolean-valued expression that is equivalent to: when the
precondition P is met, executing the command C (to termination) establishes the
postcondition Q.

16 / 54



Imperative language example

• Five constructors to code a program:

skip Do nothing, just changes the PC value

x := E Evaluate expression E and assigns its value to x

S ; T Execute S followed by T

if B then S else T endif Evaluate boolean-valued expression B and execute
S if it evaluates to true and T if it evaluates to
false

while B do S done Evaluate boolean-valued expression B and execute
S if it evaluates to true. Repeat until B evaluates
to false

17 / 54



Example program : Division

Inputs: x,y s.t. x≥ 0, y> 0

q := 0;
r := x;
while r≥ y do

r := r - y;
q := q + 1;

Outputs: q,r s.t. x=q*y+r, r≥ 0, r<y

18 / 54



Notation for substitution

• P[E/x ] represents a predicate P ′ that is identical to P except that each free reference to
x in P has been replaced with expression E in P ′.

19 / 54



Proof rules for Hoare logic

` {P}skip{P} (skip)
` {P[E/x ]}x := E{P} (assignment)

{P}S{Q}, {Q}T{R} ` {P}S ;T{R} (sequence)

P1 → P2, {P2}S{Q2},Q2 → Q1 ` {P1}S{Q1} (consequence)

{B ∧ P}S{Q}, {¬B ∧ P}T{Q} ` {P}if B then S else T endif{Q} (conditional)

{P ∧ B}S{P} ` {P}while B do S done{¬B ∧ P} (while)

20 / 54



Example program annotated with assertions

{x≥ 0, y> 0}
q := 0;
{x≥ 0, y> 0, q=0}
r := x;
{x≥ 0, y> 0, q=0, x=r}
{x≥ 0, y> 0, x=q*y+r, r≥ 0}
while r≥ y do
{x≥ 0, y> 0, x=q*y+r, r≥ y}
r := r - y;
{x≥ 0, y> 0, x=(q+1)*y+r, r≥ 0}
q := q + 1;
{x≥ 0, y> 0, x=q*y+r, r≥ 0}

{x≥ 0, y> 0, x=q*y+r, r≥ 0, r<y}

21 / 54



Predicate Transformer semantics

• Define the semantics of an imperative programming paradigm.

• For a statement s in an imperative programming language, a predicate transformer is a
function that relates a predicate that holds for a state before the execution of s with a
predicate that holds after the execution of s.

• Example: if s : x := v , and if ψ holds after the execution of s, then ψpres ≡ ψ[v/x ] holds
before the execution of s.
• If ψ ≡ (x + y) = 0, then ψpres ≡ (v + y) = 0.
• If ψ ≡ (x = v), then ψpres ≡ (v = v) ≡ true.
• If ψ ≡ false, then ψpres ≡ false.

22 / 54



Weakest precondition predicate transformer

• For a statement S and a postcondition R, a weakest precondition is a predicate Q such
that for any precondition P, PSR holds if and only if P → Q holds.

• (Especially for programs without loops) Weakest precondition provide an effective
algorithm to reduce the problem of verifying a Hoare triple to the problem of proving a
first-order logic formula.

23 / 54



Weakest precondition rules

wp( skip, R) = R
wp( x:=E, R) = R[E/x]

wp( S ;T , R) = wp(S , wp(T , R))

wp( if B then S else T , R) = (B → wp(S ,R)) ∧ (¬B → wp(T ,R))

wp( while B do S done, R) ← I if ((B ∧ I )→ wp(S , I )) ∧ ((¬B ∧ I )→ wp(S ,R)) holds

24 / 54



Hoare triple and Weakest precondition transformer

• {P}S{Q} holds iff P → wp(S ,Q) holds.

• wp() can be computed precisely for acyclic programs.

• If adequate loop invariants are available, the proof for any correct Hoare triple can be
constructed automatically.
• Unfortunately, identifying loop invariants automatically is not possible in general.

25 / 54



Example program annotated with the loop invariant

{x≥ 0, y> 0}
q := 0;
{x≥ 0, y> 0, q=0}
r := x;
{x≥ 0, y> 0, q=0, x=r}
{x≥ 0, y> 0, x=q*y+r, r≥ 0} = I

while r≥ y do
{x≥ 0, y> 0, x=q*y+r, r≥ y}
r := r - y;
{x≥ 0, y> 0, x=(q+1)*y+r, r≥ 0}
q := q + 1;
{x≥ 0, y> 0, x=q*y+r, r≥ 0}

{x≥ 0, y> 0, x=q*y+r, r≥ 0, r<y}

26 / 54



Loop invariant and its relation to the postcondition

Loop invariants as approximations of a computation. From Furia et. al., Figure 1
27 / 54



Loop invariant example: Euclid’s algorithm

Inputs: a,b s.t. a> 0,b> 0

x := a;
y := b;
{x> 0, y> 0, gcd(x,y)=gcd(a,b)}
while x 6=y do

if x<y then x := x-y else y := y-x

Output: x s.t. x=gcd(a,b)

28 / 54



Loop invariant example: Array maximum

Inputs: Array arr of integers

i := 1;
m := arr[0];
{i≥ 0, i≤len(arr), max(arr[0],arr[1],...,arr[i-1])=m}
while i 6=len(arr) do

i := i + 1;
if m≤arr[i] then m := arr[i];

Output: m s.t. m=max(arr)

29 / 54



Houdini’s guess-and-check approach

• Can identify loop invariants, given a (potentially large) set of candidates.

• Guess-and-check approach: Guess some (candidate) annotations and then check if they
are correct.

30 / 54



Houdini architecture

Houdini architecture. From I. Dillig’s slides.

31 / 54



Example program annotated with the candidate loop invariants

{x≥ 0, y> 0}
q := 0;
r := x;
candidate Ci ∈ Call ={x< 0, x< 1, x≥ 0, y> 0, x=y+1, q=r, x=q*y+r, r≥ 0, . . . }
while r≥ y do

r := r - y;
q := q + 1;

32 / 54



Houdini algorithm

Ccur := Call ; //Initialization
While something changes: //Fixed-point computation

For each Ci∈ Ccur :
if ¬Verify(Ccur , Ci ) then

Ccur := Ccur\{Ci}

Verify(Ccur , Ci ) checks if the Hoare triples generated by using Ccur as the precondition and Ci

as the postcondition are valid.

33 / 54



Example program and its verification conditions

{x≥ 0, y> 0}
q := 0;
r := x;
candidate Ci ∈ Call ={x< 0, x< 1, x≥ 0, y> 0, x=y+1, q=r, x=q*y+r, r≥ 0, . . . }
while r≥ y do

r := r - y;
q := q + 1;

Verify(Ccur , Ci ) returns false iff either of the following conditions is violated

• {x≥ 0, y> 0} q := 0; r := x {Ci}
• {Ccur ∧ r≥ y} r := r - y; q := q + 1 {Ci}

34 / 54



Houdini algorithm with its properties

Ccur := Call ; //Initialization
While something changes: //Fixed-point computation

For each Ci∈ Ccur :
if ¬Verify(Ccur , Ci ) then

Ccur := Ccur\{Ci}

Verify(Ccur , Ci ) checks if the Hoare triples generated by using Ccur as the precondition and Ci

as the postcondition are valid.

Soundness: Upon termination, Ccur represents the loop invariants

Termination: Terminates after ≤ |Ccur | iterations

Largest subset: Finds the largest subset ⊆ Call so the verification conditions are satisfied.

See the playlist on dataflow analysis to understand why.

35 / 54

https://www.youtube.com/playlist?list=PLf3ZkSCyj1tfVbTnTvhoLkE794o_3nEZ1


Limitations of the Houdini algorithm

• The invariants that can be inferred is limited by the set of guessed candidates.
• The set of required candidates can be infinitely large, e.g., x=3*y+1∨x=2*z+3.
• The guessed candidates are heuristically chosen to capture the typical properties of the

programs being analyzed.

• The running time of the algorithm is proportional to the set of guessed candidates and
the size of the program.
• Practically speaking, this limits the size of the set of guessed candidates to say < 100.

36 / 54



Data-driven invariant inference

• Idea: Execute the program on a set of high-coverage test cases.

• From the execution traces, collect the values of the variables as observed during the
execution.

• From these variable values observed during execution, generate candidate guesses for
Houdini.
• A candidate guess is a predicate that evaluates to true for all the execution traces seen so far.

37 / 54



Example program annotated with execution traces

(x,y)∈ {(0,1),(2,1),(3,2),(9,6),. . . }
q := 0;
r := x;

(x,y,q,r)∈{ (0,1,0,1),
(2,1,0,2),(2,1,1,1),(2,1,2,0),
(3,2,0,3),(3,2,1,1),
(9,6,0,9),(9,6,1,3) }

while r≥ y do
r := r - y;
q := q + 1;

Candidate loop invariants: { x=2, x≥ 0 , x=r
x+1≥ y, x+y≥ 0, x<2*y
q≤ y, q≥ y, x=q*y+r }

38 / 54



Observations on data-driven invariant inference

• While execution traces (data) prune the space of candidate loop invariants, the search
space remains uncountably large.

• We still need heuristics to orient the search towards likely invariants, perhaps by using
domain knowledge about the programs being analyzed.

• This approach requires high-coverage test cases.
• If a test suite does not cause a loop to get executed, we have no data for that loop.
• If a test suite only exercises some of the possible values, pruning is ineffective.

• This approach requires sophisticated infrastructure to efficiently generate the required
traces upon program execution.

39 / 54



Data-driven inference of affine loop invariants

• An affine loop invariant is a loop invariant of the form
∑n

i=0 ci ∗ xi = c0.
• x0, x1, . . . , xn are program variables. c0, c1 . . . , cn are constants.

• An efficient algorithm to identify the largest set (conjunction) of affine invariants exists.

• For example, let the execution traces for program variables (x , y , z) be {(0,1,2), (1,2,4),
(2,3,6)}. The candidate affine invariants are obtained from the smallest affine space that
contains these points in 3D space. In this case, the affine space is characterized by basis
vectors λ1(y = x + 1) + λ2(z = 2 ∗ y).
• The same affine space can also be characterized by other basis vectors, e.g.,
λ1(y = x + 1) + λ2(z = 2 ∗ x + 2).

• Another affine space that would also contain these points is λ1(z = x + y + 1) (but it would
not be the smallest).

• The basis vectors forms the set of candidate invariants.
40 / 54



Observations on affine loop invariant candidate inference

• The basis vectors of the smallest affine space containing a set of n points can be
computed in O(n3) time.
• Solve Ax = b using LU decomposition of matrix A (to obtain x).
• Fortunately, n is usually not that large (say 10s of variables that are live at a PC).

• The obtained candidates may be stronger (tighter) than what is actually true.
• For example, the candidates identified for {(0,1,2), (1,2,4), (2,3,6)} may be y=x+1 and

z=2*x+2, whereas the actual loop invariant was z=x+y+1.

• There is no guarantee that the inferred affine invariants will help prove the postcondition.
All these algorihms are best effort algorithms.

41 / 54



Checking a Hoare triple may produce a counterexample

• Consider a proof obligation {P}S{Q} where
• P,Q are assertions at PC1 (just before S) and PC2 (just after S) respectively.
• S is acyclic.

• Equivalent to checking the validity of π = (P → wp(S ,Q)) (using an SMT solver).

• If the SMT solver determines that π is not valid, it generates a counterexample γ.

• γ is an “execution” trace that evaluates the assertion P (at PC1) to true, but when
executed on S , evaluates the assertion Q (at PC2) to false.
• If P is stronger than the actual assertion at PC1, then γ is as good as a real execution trace.
• And so its execution over S can be used to obtain an execution trace γ′ at PC2.
• γ′, in turn, can be used to obtain the candidate assertions (e.g., loop invariants) at PC2.

42 / 54



Example of counterexample generation

{x≥ 0, y> 0}
q := 0;
r := x;
{false} assume strongest possible assertion initially

(x,y,q,r)∈{ }
while r≥ y do

r := r - y;
q := q + 1;

• Check: {x≥ 0, y> 0} q := 0; r := x {false}
• SMT solver returns invalid with γ ≡ (x , y) = (0, 1).
• Execution of γ ≡ (x , y) = (0, 1) over “q := 0; r := x” yields (x , y , q, r) = (0, 1, 0, 0).
• The assertion at the loop head is relaxed (loosened) based on this execution result.

43 / 54



Example of counterexample generation

{x≥ 0, y> 0}
q := 0;
r := x;
{x=0,y=1,q=0,r=0} smallest affine space for the current set of points

(x,y,q,r)∈{ (0,1,0,0) }
while r≥ y do

r := r - y;
q := q + 1;

• Check: {x≥ 0, y> 0} q := 0; r := x {x=0}
• SMT solver returns invalid with γ ≡ (x , y) = (1, 1).
• Execution of γ ≡ (x , y) = (1, 1) over “q := 0; r := x” yields (x , y , q, r) = (1, 1, 0, 1).

44 / 54



Example of counterexample generation

{x≥ 0, y> 0}
q := 0;
r := x;
{y=1,x=q,x=r} smallest affine space for the current set of points

(x,y,q,r)∈{ (0,1,0,0), (1,1,0,1) }
while r≥ y do

r := r - y;
q := q + 1;

• Check: {x≥ 0, y> 0} q := 0; r := x {x=0}
• SMT solver returns invalid with γ ≡ (x , y) = (1, 1).
• Execution of γ ≡ (x , y) = (1, 1) over “q := 0; r := x” yields (x , y , q, r) = (1, 1, 0, 1).

45 / 54



Counterexample-guided invariant inference algorithm

1. Initialize: set the candidate assertion at the program entry to the P (precondition), and
at all other program points to false.

2. Check each resulting Hoare triple in sequence. If all Hoare triples are valid, return
success. If a Hoare triple fails with counterexample γ, go to the next step.

3. Execute γ to obtain traces at other PCs. To ensure termination, upper bound the number
of execution steps.

4. Use the newly generated traces to relax the candidate assertions at all PCs. Go to step 2.

46 / 54



Program optimization

Original program Optimized program
char mul2(char x) {

return 2*x;
}

char shl1(char y) {
return y<<1;
}

• How to check if shl1 is an optimized implementation of mul2, i.e., are they equivalent?

• Construct a product program that executes both programs in lockstep, and reason about
the properties of the product program.

• {x=y} mul2(x); shl1(y) { ret1=ret2 }

47 / 54



Program optimization with memory operations

Original program Optimized program
void mul2(char* x) {

*x := *x * 2;
}

void shl1(char* x) {
*x := *x << 1;
}

• A global array M maps int64 to int8.
• select(M, p) returns M.at(p).
• store(M, p, v) returns a new array M

′
s.t.

∀α :((α = p)→ M
′
.at(α) = v) ∧ ((α 6= p)→ M

′
.at(α) = M.at(α).

• “*x” translates to select(M, x).

• “*x := v” translates to M := store(M, x, v).
• Check: {x1=x2, M1 = M2} mul2(x1); shl1(x2) { M1 = M2 }

• Equivalent to
(x1=x2∧M1 = M2)→ (store(M1, x1, select(M1, x1)) = store(M2, x2, select(M2, x2))).

48 / 54



Program optimization with loops

Original program Optimized program
void init1(long n) {

long i = 0;
while (i < n) {

foo(i * 3);
i++;
}
}

void init2(long m) {
long j = 0;
while (j < 3*m) {

foo(j);
j += 3;
}
}

• The product program needs to correlate the two programs in lockstep.

• The equivalence check becomes easier if small acyclic fragments of both programs
can be correlated.

49 / 54



Product program examples

Individual programs f() and g()
f() {

while (*)
A;

return a; }

g() {
while (*)

B;
return b; }

Product programs X() and Y()
X() {

while (*)
A;

while (*)
B;

assert(a == b); }
}

Y() { Easier to infer invariants here
assert(Inv);
while (*) {

A;
B;
}
assert(a == b); }

50 / 54



Convert while to if-then-else and goto

Original program Optimized program
void init1(long n) {

long i = 0;
l1: if (i < n) {

foo(i * 3);
i += 1;
goto l1; }

}

void init2(char* b, long m) {
long j = 0;

l2: if (j < 3*m) {
foo(j);
j += 3;
goto l2; }

}

51 / 54



Product program with invariants

void X(long n, long m) {
long i = 0; long j = 0;

l: assert(j=3*i);
if (i < n && j < 3*m) {

foo(i * 3);
i += 1;
foo(j);
j += 3;
goto l; }

assert(M1 = M2);
}

52 / 54



Equivalence checker demonstration

53 / 54



Translation validation

54 / 54


